Practical Asterisk 1.4 (unstable) - Rev. 722

Foreword
1. Installation and "Hello World"
Introduction
A simple PBX system
Objectives
Requirements
Which Asterisk version?
Which Linux distribution is best for Asterisk?
Why don't we use Asterisk packages with apt-get or rpm?
Installing from current Asterisk sources
Configure the Asterisk server

An answering machine
What did we just do?
extensions.conf - the Asterisk dialplan
voicemail.conf - The voicemail system
Calling the public telephone network
Taking calls from the public telephone network
2. Dialplan Basics
Context
Syntax
Extension
Syntax
Fundamental Applications
Priority
A "Hello World!" example
n priority
Pattern Matching
Syntax
Testing a pattern using dialplan show
Pattern matching order
A special case - the pattern "_." in Asterisk 1.2
Include statements
Syntax
Example
Order of execution when using include statements
Time-conditional include statements
Syntax
Example
3. Programming in the dialplan
Programming "How-to"
Program structure
Variables
Labels and Goto()
While() loops
GotoIf() conditional
Gosub() subroutines
Variables
Expanding variables in an extension
General considerations
String variables
Reserved characters
Integers
Defining global variables in extensions.conf
Defining variables with Set()
Syntax
Inheritance of channel variables
Single-level inheritance
Multi-level inheritance
System channel variables
Manipulating variables
Substring
Syntax
Examples
Special extensions
The h extension
Example
The i extension
Example
The o and a extensions
The t and T extensions
t extension
T extension
The s extension
Macros
Macro basics
Priority jumping is deprecated
4. Voicemail
Introduction
Example implementations
The Robinson Family
Tasks
Configuration
Widgets, Inc.
Tasks
Configuration
Special considerations
Dialplan applications
VoiceMail()
Syntax
VoiceMailMain()
Syntax
IVR
voicemail.conf
[general]
[zonemessages]
Syntax
Defined contexts
The default context
Mailboxesd
Syntax
Directory (Dial-by-Name)
Syntax
Operation
Saving passwords in voicemail.conf
5. Interactive Voice Response (IVR)
A simple IVR
Differences between Playback() and Background()
Difference between 10 and 1000
Intelligent discernment
Invalid input (the i extension)
Pauses
Multilevel IVR systems
IVR depth
Text-to-Speech (TTS)
Installating Cepstral Text-to-Speech
Examples and tests
Pauses in text
6. External control of Asterisk
asterisk -rx "command"
Example
Call Files
Parameters
Executing call files in the future
Hotel wake-up call example
The Asterisk Manager Interface (AMI)
Example: Getting the number of voicemail messages with expect
StarAstAPI for PHP
Example: Getting the number of mailbox messages with PHP
The Aynchronous Javascript Asterisk Manager (AJAM)
Example: Getting the number of voicemail messages with AJAM
HTML
Plain-Text
XML
AJAX and AJAM considerations
JSON
Ping
AJAM Demo
Apache
7. Fax server
A fax server with IAXmodem and Hylafax
Installing IAXmodem
Installing Hylafax
Receiving faxes
Sending faxes
Sending received faxes as e-mail
IAXmodem and Hylafax FAQ
A. Installation instructions for Asterisk 1.4
Installing Asterisk 1.4.x on Debian Linux 4.0 (Etch)
Start-up and shutdown scripts
B. Applications in the dialplan
AddQueueMember()
ADSIProg()
AgentCallbackLogin()
AgentLogin()
AgentMonitorOutgoing()
AGI()
AlarmReceiver()
AMD()
Answer()
AppendCDRUserField()
Authenticate()
Background()
BackgroundDetect()
Busy()
CallingPres()
ChangeMonitor()
ChanIsAvail()
ChannelRedirect()
ChanSpy()
Congestion()
ContinueWhile()
ControlPlayback()
DateTime()
DBdel()
DBdeltree()
DeadAGI()
Dial()
Dictate()
Directory()
DISA()
DumpChan()
EAGI()
Echo()
EndWhile()
Exec()
ExecIf()
ExecIfTime()
ExitWhile()
ExtenSpy()
ExternalIVR()
FastAGI()
Festival()
Flash()
FollowMe()
ForkCDR()
GetCPEID()
Gosub()
GosubIf()
Goto()
GotoIf()
GotoIfTime()
Hangup()
IAX2Provision()
ImportVar()
Log()
LookupBlacklist()
LookupCIDName()
Macro()
MacroExclusive()
MacroExit()
MacroIf()
mailboxExists()
MeetMe()
MeetMeAdmin()
MeetMeCount()
Milliwatt()
MixMonitor()
Monitor()
Morsecode()
MP3Player()
MusicOnHold()
NBScat()
NoCDR()
NoOp()
Page()
Park()
ParkAndAnnounce()
ParkedCall()
PauseMonitor()
PauseQueueMember()
Perl()
PHP()
Pickup()
Playback()
Playtones()
PrivacyManager()
Progress()
Queue()
QueueLog()
Random()
Read()
ReadFile()
RealTime()
RealTimeUpdate()
Record()
RemoveQueueMember()
ResetCDR()
RetryDial()
Return()
Ringing()
SayAlpha()
SayDigits()
SayNumber()
SayPhonetic()
SayUnixTime()
SendDTMF()
SendImage()
SendText()
SendURL()
Set()
SetAMAFlags()
SetCallerPres()
SetCDRUserField()
SetGlobalVar()
SetMusicOnHold()
SetTransferCapability()
SIPAddHeader()
SIPdtmfMode()
SMS()
SoftHangup()
StopMonitor()
StopPlaytones()
System()
Transfer()
TryExec()
TrySystem()
UnpauseMonitor()
UnpauseQueueMember()
UserEvent()
Verbose()
VMAuthenticate()
VoiceMail()
VoiceMailMain()
Wait()
WaitExten()
WaitForRing()
WaitForSilence()
WaitMusicOnHold()
While()
Zapateller()
ZapBarge()
ZapRAS()
ZapScan()
C. Functions in the dialplan
AGENT()
ARRAY()
BASE64_DECODE()
BASE64_ENCODE()
CALLERID()
CDR()
CHANNEL()
CHECKSIPDOMAIN()
CURL()
CUT()
DB()
DB_DELETE()
DB_EXISTS()
DUNDILOOKUP()
ENUMLOOKUP()
ENV()
EVAL()
EXISTS()
FIELDQTY()
FILTER()
GLOBAL()
GROUP()
GROUP_COUNT()
GROUP_LIST()
GROUP_MATCH_COUNT()
IAXPEER()
IF()
IFTIME()
ISNULL()
KEYPADHASH()
LANGUAGE()
LEN()
MATH()
MD5()
MUSICCLASS()
ODBC_SQL()
ODBC_USER_DATABASE()
QUEUEAGENTCOUNT()
QUEUE_MEMBER_COUNT()
QUEUE_MEMBER_LIST()
QUOTE()
RAND()
REGEX()
SET()
SHA1()
SIPCHANINFO()
SIPPEER()
SIP_HEADER()
SORT()
STAT()
STRFTIME()
STRPTIME()
TIMEOUT()
TXTCIDNAME()
URIDECODE()
URIENCODE()
VMCOUNT()
D. Configuration templates
Creating templates
Using templates
Example
E. GNU Free Documentation License
PREAMBLE
APPLICABILITY AND DEFINITIONS
VERBATIM COPYING
COPYING IN QUANTITY
MODIFICATIONS
COMBINING DOCUMENTS
COLLECTIONS OF DOCUMENTS
AGGREGATION WITH INDEPENDENT WORKS
TRANSLATION
TERMINATION
FUTURE REVISIONS OF THIS LICENSE
ADDENDUM: How to use this License for your documents
Index
Chapter 1. Installation and "Hello World"

Introduction

It is a common prejudice -- not entirely unjustifiable -- among the Asterisk-uninitiated that it takes at least two or three days of studying web pages and documentation before it's possible to get an Asterisk server to do anything at all. For many people interested in Asterisk, this is daunting. If you don't like delving into the theoretical underpinnings of a complicated piece of software like Asterisk and would rather see something practical and working as soon as possible, this chapter is the place to start. By following the instructions here you'll have your first working Asterisk system up in 30 minutes -- we promise!

Most programming textbooks begin with a sample program that prints "Hello World" on the screen. The purpose is to teach the basic form and syntax of the programming language and to give the learning programmer the early confidence needed to tackle the more challenging tasks to follow. This chapter introducing you to Asterisk is written in that spirit.

A simple PBX system

What does the simplest PBX system look like? It needs only two telephones and a "black box" connecting them to each other. In this case, the "black box" is a conventional PC in which we will install Asterisk; the two telephones are what we call "softphones", so named because they are implemented entirely in software. We'll install those softphones on a PC as well. As such, the requirements for the following example are themselves simple: all you need is a typical PC where you can install a current Linux distribution.[1]
Objectives

· Transform a regular PC with a freshly installed Linux distribution into a mini-PBX.

· Install and configure two VoIP telephones and assign them extension numbers 2000 and 2001

· Call extension 2001 from 2000 and vice-versa.

Requirements

You will need a reasonably modern PC with sufficient memory. Though it's possible to install Asterisk on older hardware, the process will take longer and our 30 minute promise won't apply. (Working with older hardware can also be frustrating.) As a minimum, you should have a 500 MHz Pentium-class system with at least 512 MB RAM and at least 20 GB of hard disk. Asterisk will run on any current Linux distribution. These are available in retail stores, through mail order, or, if you have a broadband connection, by downloading them from the Internet.[2]
Make sure the distribution you use is current.

The example details below assume you are using a Debian Linux[3]distribution. The individual configuration instructions are entered on the command line.[4]
Which Asterisk version?

Asterisk Version 1.4 was released in late 2006 and may be considered stable. This book will focus primarily on 1.4; except where otherwise noted, commands described here may also be used with Asterisk 1.2.

Which Linux distribution is best for Asterisk?

Any discussion about the most appropriate Linux distribution for Asterisk quickly acquires a religious tone. The author chose Debian, but we've allowed space for installation instructions specific to other distributions in the Appendix because we fundamentally support user choice. Unfortunately, later chapters go into considerable technical detail and it simply isn't possible to include examples for each of the distributions specifically referenced in this book, let alone the myriad distributions available. For this reason, unless otherwise noted, assume that we are using Debian in the examples.

Why don't we use Asterisk packages with apt-get or rpm?

There's a really simple reason for this: currency.

As of this writing, no Linux distribution has even a half-way current version of Asterisk in its stable tree. The Asterisk project is extremely active and ever-changing. It just doesn't make sense to install a 1.0 version when 1.4 has been in release for over a year and is simply better in nearly every respect.

	
	

	
	It is true that packages have certain advantages, and they can make updating much easier. We hope that package-based installs will make more sense in future.

In return for the work of compiling the source packages you'll be rewarded with the knowledge that your Asterisk system is the most current it can be, and you won't be at the mercy of the package maintainers for your specific distribution.

Installing from current Asterisk sources

You can find Asterisk installation instructions for many of the more widely used Linux distributions in the Appendix. Use these instructions (see Appendix A, Installation instructions for Asterisk 1.4) to install your preferred Linux distribution. In the book, we assume a Debian installation (see the section called “Installing Asterisk 1.4.x on Debian Linux 4.0 (Etch)”). Return to the next section when you've finished installing Linux.

Configure the Asterisk server

You will find all of the Asterisk configuration files for a standard install in the /etc/asterisk directory:

debian:/usr/src# cd /etc/asterisk

debian:/etc/asterisk# ls

adsi.conf cdr_tds.conf indications.conf privacy.conf

adtranvofr.conf codecs.conf logger.conf queues.conf

agents.conf dnsmgr.conf manager.conf res_odbc.conf

alarmreceiver.conf dundi.conf meetme.conf rpt.conf

alsa.conf enum.conf mgcp.conf rtp.conf

asterisk.adsi extconfig.conf misdn.conf sip.conf

asterisk.conf extensions.ael modem.conf sip_notify.conf

cdr.conf extensions.conf modules.conf skinny.conf

cdr_custom.conf features.conf musiconhold.conf telcordia-1.adsi

cdr_manager.conf festival.conf osp.conf voicemail.conf

cdr_odbc.conf iax.conf oss.conf vpb.conf

cdr_pgsql.conf iaxprov.conf phone.conf zapata.conf

debian:/etc/asterisk#

Yes, this is a pretty hefty list, but don't let it scare you off. For our mini-PBX, we only need to worry about two specific files. First, we need to move the files created with make samples to /etc/asterisk/backup/ (so that we might retrieve them for later use; it is generally a good practice to copy original files to a backup directory when you are making changes):

debian:/etc/asterisk# mkdir backup

debian:/etc/asterisk# mv sip.conf backup/

debian:/etc/asterisk# mv extensions.conf backup/

debian:/etc/asterisk#

Using your favorite editor[5]create a new /etc/asterisk/sip.conf and enter the following:[6]
[general]

port = 5060

bindaddr = 0.0.0.0

context = others

[2000]

type=friend

context=my-phones

secret=1234

host=dynamic

[2001]

type=friend

context=my-phones

secret=1234

host=dynamic

We write a very simple dialplan in /etc/asterisk/extensions.conf:

[others]

[my-phones]

exten => 2000,1,Dial(SIP/2000)

exten => 2001,1,Dial(SIP/2001)

Are we serious? These few lines are enough to configure a PBX? The conventional wisdom says that Asterisk is unfathomably complex. Let's give it a try! Start Asterisk with the shell command asterisk -c:

debian:/etc/asterisk# asterisk -c

Asterisk 1.4.2, Copyright (C) 1999 - 2005 Digium.

Written by Mark Spencer <markster@digium.com>

==

=

[Booting...Nov 20 18:59:28 NOTICE[14937]: cdr.c:1185 do_reload: CDR

simple logging enabled.

..

.

...]

Asterisk Ready.

*CLI>

When Asterisk is started this way we also get a console that lets us communicate with the running Asterisk process. What we see now is the Asterisk CLI (command line interface) which lets us interactively control Asterisk. Our first action will be to stop Asterisk immediately with the command stop now:

*CLI> stop now

debian:/etc/asterisk#

Now we must connect two SIP phones to the mini-PBX. If you don't have any physical phones, you can use software phones (“softphones”) which you can download from the Internet.

	[image: image1.png]

	

	
	If you intend to use a single test PC for these examples, you will have to set the SIP port on the softphone to 5061, since Asterisk will already be using the standard SIP port 5060 for its own SIP connections!

	[image: image2.png]

	

	
	Set both the Registrar and Proxy addresses in the SIP phones to the IP address of your Asterisk server. Some phones won't accept any blank fields, even if the fields aren't needed for your situation. Set them to a meaningless value if necessary. Sadly, there's no hard and fast rule here; it depends on the phone. Sometimes a little trial and error is unavoidable.

For the user configuration on the phone, use the extension information we set in /etc/asterisk/sip.conf. SIP extension 2000 must be configured this way:

· User: 2000

· Password: 1234

· SIP-Registrar: IP address of your Asterisk server

· SIP-Proxy: IP address of your Asterisk server

If you don't know the address of your Asterisk server (and assuming it has one network card and one IP address) you can find it with this command:

debian:/etc/asterisk# ifconfig | grep Bcast | sed s/Bcast.*//

 inet addr:23.3.19.73

In this case, the IP address is 23.3.19.73.

Now we start Asterisk again, this time with more verbose console logging so that we can see what it is doing when we try to place a call. We do this by adding the parameters -vvvvvc after the command (the 5 v's mean “verbosity level 5”). This will let us see when the SIP phone registers with the PBX:

debian:/etc/asterisk# asterisk -vvvvvc

[...]

Asterisk Ready.

*CLI>

Once you've configured your SIP phones, it's time to register them with the server. To be absolutely sure, turn the phone off and then on again (or, in the case of a softphone, close and open the application). This can require a bit of patience; some SIP phones are rather slow and can take up to a few minutes to finish rebooting. If all goes well, we should see the phones registering with Asterisk:

*CLI> -- Registered SIP '2000' at 87.143.3.144 port 5060

expires 120 -- Unregistered SIP '2000'

*CLI> -- Registered SIP '2001' at 87.143.3.145 port 5060

expires 120 -- Unregistered SIP '2001'

Once the phones are registered, we can make some calls. This part is easy - using extension 2000, dial 2001. If you are able to have a conversation, you've succeeded! Your first mini-PBX with Asterisk is working.

	[image: image3.png]

	

	
	If you miss the registration message in all the excitement, you can check to see if your phones have registered by entering sip show peers in the Asterisk CLI. This will give you a list of all the configured and registered SIP phones. With sip show peer 2000 you will get much more detailed information about SIP extension 2000.

You can stop Asterisk at any time by typing stop now in the Asterisk CLI.

An answering machine

Asterisk comes complete with a built-in voicemail module but it has to be configured in /etc/asterisk/voicemail.conf before we can use it. As a first step (which you should make a routine) we copy the default files into our previously created backup directory:

debian:/# cd /etc/asterisk

debian:/etc/asterisk# mv voicemail.conf backup/

Now we can create a new /etc/asterisk/voicemail.conf and type the following into it:

[general]

format = wav

[default]

2000 => 4711,Joe Bloggs,joeb@megacorp.biz

2001 => 0815,Darlene Doe,dard@megacorp.biz

We've just configured two default mailboxes (yes, it is that simple). We're not quite done yet, though. We need to add a few more lines in /etc/asterisk/extensions.conf to tie these mailboxes to our phones and make them accessible. Make sure to add the ",20" at the end of the Dial() command:

[others]

[my-phones]

exten => 2000,1,Dial(SIP/2000,20)

exten => 2000,2,VoiceMail(2000,u)

exten => 2001,1,Dial(SIP/2001,20)

exten => 2001,2,VoiceMail(2001,u)

exten => 2999,1,VoiceMailMain(${CALLERID(num)},s)

Done! Now just start Asterisk with asterisk -vvvvvc
	[image: image4.png]

	

	
	In a running Asterisk console, the command reload is sufficient.

and make a call to the extension 2000. After 20 seconds (the reason for the "20" at the end of the Dial() command), the call is sent to voicemail. If extension 2000 is busy, the call goes directly to voicemail. You can check for messages at extension 2000 by dialling 2999, which will send you to the voicemail retrieval menu.

For more details on configuring voicemail (such as adding password security or a description of the voicemail menu) see Chapter 4, Voicemail.

What did we just do?

With this success under our belts, let's go through the configuration files line by line, beginning with /etc/asterisk/sip.conf. This will help us understand what Asterisk is doing and why.

[general]

port = 5060

bindaddr = 0.0.0.0

context = others

In the first section, called [general], we set global configuration values. The standard port for SIP connections is 5060. The bindaddr = 0.0.0.0 value tells Asterisk to listen for connections on all the IP addresses configured on the system. Most systems will have only a single IP address. If you have multiple physical or virtual interfaces configured, or even multiple instances of Asterisk running, and you want to decide which IP addresses Asterisk will accept connections on, you can specify those addresses with the bindaddr value.

The context value is special and needs a bit more explanation, so we'll go into that in more detail elsewhere in the book. As you go through the instructions and examples, you'll become more comfortable with the idea of “context” as it applies to Asterisk and learn how to employ it.

[2001]

type=friend

context=my-phones

secret=1234

host=dynamic

The [2001] section defines parameters for the 2001 SIP extension. We use a number by convention; though most people expect extensions to have numbers, SIP extensions can also be defined with an alphanumeric identifier -- for example, [Reception-1]. The parameter type=friend simply means that this SIP extension can both accept and make calls.[7]
Again we encounter that ominous value, context. We are calling the context my-phones in /etc/asterisk/extensions.conf; When we look at that file in the next section, the application of contexts should become clearer.

The secret value sets a password for the SIP extension. We use this to prevent an unauthorized device from registering as extension 2001. It's best to use numbers here, since it's also easier to enter numbers with most telephone sets. The term host=dynamic tells Asterisk that it doesn't matter if the IP address of the SIP extension 2001 changes.

extensions.conf - the Asterisk dialplan

The /etc/asterisk/extensions.conf -- known as the “dialplan” -- is the heart of every Asterisk configuration (see also Chapter 3, Programming in the dialplan). In a sense, you can equate them with a switchboard used in early telephone systems. The dialplan determines which phones can make calls to other phones, and how.

The dialplan is divided into contexts.

[others]

The first section of the configuration is the context [others]. As we are not using it in this example, it can be empty.

[my-phones]

exten => 2000,1,Dial(SIP/2000,20)

exten => 2000,2,VoiceMail(2000,u)

Asterisk always uses a context when handling a call from one phone to another. The context name is limited only by your imagination, but must be consistent across configuration files. This means that if you refer to a context my-phones in /etc/asterisk/sip.conf, you must use the same name in the relevant part of /etc/asterisk/extensions.conf. This context is critical to the operation of the phone! It determines what extension numbers can be dialled and which actions will be allowed.

	[image: image5.png]

	

	
	The context of the phone you are calling to is irrelevant here. Understanding this distinction is vital for successful configuration.

The syntax of a dialplan entry always follows this convention:

exten => Number,Priority,Application
When a number is dialled, Asterisk checks to see if it matches a dialplan entry. If a match is found, that entry is read and executed. If there is more than one applicable entry for a dialled number, Asterisk will execute the entry with the priority 1 first. The third parameter ("Application") defines what Asterisk actually does with the call.

Based on our sample configuration (see above), this is what happens when we make a call from extension 2001 to extension 2000:

· Asterisk looks up the context for the calling extension (2001) in /etc/asterisk/sip.conf. In our example, this context is [my-phones]. Asterisk uses this context to decide which set of entries in /etc/asterisk/extensions.conf it should use.

· Having found the context [my-phones] in /etc/asterisk/extensions.conf, Asterisk executes the entries matching the dialled number, 2000, in order of priority. Our example has two matching lines.

· The matching entry with the priority 1 is executed first, no matter the physical order of the entries. Here, the entry with priority 1 has the command Dial(SIP/2000,20). The Dial() application is run with the parameters given; it looks for the entry for 2000 in /etc/asterisk/sip.conf and rings it for 20 seconds (hence the ",20" after SIP/2000).

· If the SIP extension 2000 is not answered within 20 seconds, Dial() completes and the priority is increased by 1.

· The matching entry with the next priority -- exten => 2000,2,VoiceMail(2000,u) -- is now executed. Asterisk runs the VoiceMail() application with the parameters "2000" and "u". The "2000" is for the mailbox number as configured in /etc/asterisk/voicemail.conf; the "u" tells Asterisk to use the standard "unavailable" message. By now you've probably figured out that we picked a number for simplicity's sake; we could just as easily have used 5555 or joebloggs.

Of course, voicemail is no good unless you can retrieve messages others have left for you. We enable access with this entry:

exten => 2999,1,VoiceMailMain(${CALLERID(num)},s)

Ah -- our first exposure to a dialplan function in Asterisk! We call the application VoiceMailMain() with the function ${CALLERID(num)} as a parameter. The ${CALLERID(num)} function returns the number of the calling party. In this way, VoiceMailMain() always knows to retrieve messages for the phone from which it was called. If the parameter is not supplied, it will ask the caller for the mailbox number. The ",s" parameter tells VoiceMailMain() not to ask the caller for a password.

voicemail.conf - The voicemail system

The voicemail module (see also Chapter 4, Voicemail) is configured in /etc/asterisk/voicemail.conf in much the same way as the dialplan (/etc/asterisk/extensions.conf):

[general]

format = wav

[default]

2000 => 4711,Joe Bloggs,joeb@megacorp.biz

2001 => 0815,Darlene Doe,dard@megacorp.biz

The [general] section is where define global parameters, such as the file format used for saving the voice messages, are defined. Actual mailboxes are defined in a context called [default]; here you see the lines defining the mailboxes for extension 2000 and 2001, complete with passwords (4711 and 0815). After the password, there is a field for the name of the mailbox owner and that person's e-mail address. Messages are attached as WAV-format files to an e-mail and sent to the intended recipient.

Calling the public telephone network

Now, you're probably thinking “It's nice that we have a working telephone system, but what good is it if you can't make calls to the big wide world?” With your permission, an additional 10 minutes of your time, and an Internet connection, we will solve that problem too. You'll need an account with a SIP telephony provider.

The example below shows a sample configuration for a connection to a SIP telephony provider. There are many SIP providers available; a quick Google™ search will give you a selection of providers you can try out. Once configured, this will allow you to make calls to the PSTN (Public Switched Telephone Network) from your Asterisk extensions. The SIP provider account information must first be entered in /etc/asterisk/sip.conf:

[general]

port = 5060

bindaddr = 0.0.0.0

context = others

register => 5587572:UHDZJD@my-voip-provider.com/5587572

; ^ ^ ^ ^

; | | | |

; User Password Provider User

[2000]

type=friend

context=my-phones

secret=1234

host=dynamic

[2001]

type=friend

context=my-phones

secret=1234

host=dynamic

[ext-sip-account]

type=friend

context=from-voip-provider

username=5587572

fromuser=5587572

secret=UHDZJD

host=my-voip-provider.com

fromdomain=my-voip-provider.com

qualify=yes

insecure=very

nat=yes

The SIP provider will provide you with a username (5587572 in our example) and password (UHDZJD in our example) when you open your account. Once the SIP account is configured, we still need to add an entry to /etc/asterisk/extensions.conf to allow outgoing calls:

[others]

[my-phones]

exten => 2000,1,Dial(SIP/2000,20)

exten => 2000,2,VoiceMail(2000,u)

exten => 2001,1,Dial(SIP/2001,20)

exten => 2001,2,VoiceMail(2001,u)

exten => 2999,1,VoiceMailMain(${CALLERID(num)},s)

exten => _0[1-9].,1,Dial(SIP/${EXTEN}@ext-sip-account)

Once these new entries have been entered, save the file and start Asterisk as before, with asterisk -vvvvvc so that we get the CLI. Wait a few seconds for the SIP phones to register. Now simply dial a number.

	[image: image6.png]

	

	
	When dialing through most VoIP providers, you need to dial the complete number, including predial digit (1 in North America) and area or city code, even if the call is a local call in your calling area. For North America, this means you would be dialling the predial digit, followed by the full 10 digit number including area code, even in regions that do not already have 10 digit local dialing. (Later on, we'll show you some techniques that you can use in /etc/asterisk/extensions.conf so that you don't need to dial the full number for local calls in areas where it is not normally required.)

	[image: image7.png]

	

	
	Most SIP providers charge a per-minute rate for local calls and many require pre-payment. An advantage is that there is no monthly flat-rate for most SIP accounts.

If everything is working as it should, you will hear the remote line ringing and be able to observe the call progress in the CLI.

It's a bit early to explain exactly how this works; more on that later.

[8]

Taking calls from the public telephone network

The last step is a small one: we want to be able to take incoming calls via our SIP provider on extension 2000. To do this, we need to add another context to /etc/asterisk/extensions.conf:

[others]

[my-phones]

exten => 2000,1,Dial(SIP/2000,20)

exten => 2000,2,VoiceMail(2000,u)

exten => 2001,1,Dial(SIP/2001,20)

exten => 2001,2,VoiceMail(2001,u)

exten => 2999,1,VoiceMailMain(${CALLERID(num)},s)

exten => _0[1-9].,1,Dial(SIP/${EXTEN}@ext-sip-account)

[from-voip-provider]

exten => 18885556266,1,Dial(SIP/2000)

Done!

In our example, the number 18885556266 is the PSTN number (also called a DID; more on that later) given to your account by your SIP provider.

You can, of course, configure voicemail for calls coming in from the PSTN:

[others]

[my-phones]

exten => 2000,1,Dial(SIP/2000,20)

exten => 2000,2,VoiceMail(2000,u)

exten => 2001,1,Dial(SIP/2001,20)

exten => 2001,2,VoiceMail(2001,u)

exten => 2999,1,VoiceMailMain(${CALLERID(num)},s)

exten => _0[1-9].,1,Dial(SIP/${EXTEN}@ext-sip-account)

[from-voip-provider]

exten => 18885556266,1,Dial(SIP/2000,20)

exten => 18885556266,2,VoiceMail(2000,u)

If you were so inclined, you could just leave things like this and start using your new mini-PBX, but what fun would that be? This chapter was only meant to show you how quickly you can build a working Asterisk system. In the coming chapters, we'll fill in the gaps and show you just how much you can really do with Asterisk.

[1] Our “Hello World” is even more fun if you have more than one computer connected by a local area network. You can use one computer as the Asterisk server and the others for the softphones.

[2] Here are URLs for a few of the more popular distributions:

· Debian: http://www.debian.org
· SuSE Linux (Open SuSE): http://www.opensuse.org
· Gentoo: http://www.gentoo.org
· Fedora (Redhat): http://www.fedora.org
· Ubuntu: http://www.ubuntu.org
[3] The current Debian "stable".

[4] You will need to call up a console window (such as xterm or konsole) if you are using a window manager.

[5] If you haven't yet chosen a favorite editor, we recommend nano. In Debian Linux this is installed (as the root user) with the command apt-get -y install nano. You then edit files by invoking nano filename. Nano provides a menu of its most important commands at the bottom of the screen.

[6] The simple passwords depicted here are, of course, only for testing and demonstration purposes. For actual production installations, you should use much stronger passwords.

[7] The entry type= has three possible values (we'll address these in more detail in a later chapter):

· friend: can make and accept calls.

· peer: can only make calls.

· user: can only accept calls.

[8] Not too much at once! For now, all you need to know is that the ${EXTEN} variable always contains the number dialled by the caller for the specific instance (see Chapter 3, Programming in the dialplan).
Chapter 2. Dialplan Basics

The dialplan is the heart of Asterisk, and everything it does begins here.

Two important files in /etc/asterisk make up the dialplan in 1.4. The first is extensions.conf, which uses the original and still recommended priority model; the second is extensions.ael, which uses the newer Asterisk Extensions Language; we'll look at that in more detail in a separate chapter. For now, we'll use the traditional priority model, since even in 1.4, extensions.ael is converted into priority format and added to extensions.conf when Asterisk is started.

Context

The Asterisk dialplan is divided into sections, and each section is called a context. Any dialplan must begin with a [general] context where global configuration entries reside, but the subsequent contexts can have any name. Contexts are the means by which actual physical devices (usually telephones, but not always; for example, SIP or Zap devices) are bound to the dialplan. The configuration for every device, be it a softphone, hardphone or outgoing trunk, must specify the default context for that device. Here's an example from a sip.conf file:

[2000]

type=friend

context=internal-phones

secret=1234

host=dynamic

This SIP device called 2000 always initiates calls in the internal-phones context. This means that if a caller uses this phone to dial a number, Asterisk will look in the internal-phones context for an extension matching that number. If no matching extension is present, nothing happens.

	[image: image8.png]

	

	
	Understanding Asterisk contexts is essential for effective programming and administration of an Asterisk system. It is not always clear to a beginner how important correct use of contexts really is. If you're not sure, please follow the step-by-step example for a simple PBX system in the chapter Chapter 1, Installation and "Hello World".

Syntax

Contexts are defined by a name inside square brackets ("[" and "]"). Ideally the name is relevant and helps to describe the intended use for the context. This name will also be used to refer to the context elsewhere, be it in other contexts or in other Asterisk configuration files. All lines following a context name are considered part of that context, until the next context name is encountered:

[general]

[internal-phones]

Rules, instructions, etc.

[widgets]

Rules, instructions, etc.

Extension

Individual entries in extensions.conf are called extensions. Extensions are interpreted by Asterisk every time a call is initiated, but extensions.conf is only read into Asterisk at start time.[9]You can also refresh the dialplan during operation from the CLI (Command Line Interface) by entering the command reload now (which reloads all the configurations) or extensions reload (which reloads only the dialplan).

Syntax

An extension consists of the following parts:

· Extension (Name or number)

· Priority (a kind of program line number)

· Application - an instruction which tells Asterisk what it should do with the call.

exten => Extension,Priority,Application
e.g.
exten => 123,1,Answer()

Fundamental Applications

In order to build the dialplan examples in this chapter, we need the following basic applications[10](all these are described in greater detail in Appendix B, Applications in the dialplan):

· Answer()
The Answer() application does just that - it answers a call. When a channel rings, Answer() tells Asterisk to "lift the virtual receiver." (See also the section called “Answer()”.)

· Hangup()
Hangup() is the opposite of Answer(). An active connection is terminated, and Asterisk "hangs up" the virtual receiver (see also the section called “Hangup()”).

· Playback(soundfile)
This tells Asterisk to play a specified sound file. By default, it plays files found in /var/lib/asterisk/sounds/, but you can also specify another source directory. No file extension is specified because the directory may contain the same sound in different formats. Asterisk will select the most appropriate format -- more on that later (see also the section called “Playback()”).

· Wait(number)
Wait() defines a pause; Number indicates the number of seconds to pause (see also the section called “Wait()”).

· NoOp(string)
This application does nothing. "NoOp" means "no operation." It is useful, however, when you are trying to troubleshoot a problem with your dialplan. When NoOp(string) is executed, Asterisk prints string on the CLI, though only if the verbosity level is set to 3 (you can do this easily by entering the command set verbose 3 in the CLI). (See also the section called “NoOp()”.)

· VoiceMail(mailbox,u)

Lets the caller leave a voice message in the mailbox specified (see also the section called “VoiceMail()”).

· VoiceMailMain()

Provides access to the voicemail system. The mailbox owner will use this to retrieve her messages (see also the section called “VoiceMailMain()”).

Priority

A typical extension is composed of a multiple entries. Each entry has a priority so that Asterisk knows in what order it should execute the entries. If you have ever worked with early versions of BASIC, you might be familiar with line numbers; priorities work in much the same way, but with one important distinction. They are always executed in numerical order from smallest to largest, but there can be no gaps! If Asterisk executes an entry of priority n, then it will look for the next entry at n + 1. If it cannot find an entry at n + 1, it stops executing without displaying an error in the CLI.

A "Hello World!" example

The following extension will be invoked when a phone with the default context widgets dials 8888. Asterisk picks up the line, plays the hello-world sound file (which is installed with Asterisk) and hangs up.

[widgets]

exten => 8888,1,Answer()

exten => 8888,2,Playback(hello-world)

exten => 8888,3,Hangup()

n priority

To make it easier to work with priorities, Asterisk versions from 1.2 onward have supported the n priority. The n priority is like automatic line numbering; when Asterisk is running through the dialplan and encounters an entry with priority n, it simply executes it as though it were equivalent to the previous priority, plus 1. This is useful when you have extensions with many entries and you need to add or remove an entry, because it saves you having to renumber the entire extension. The example below illustrates what we mean. A standard extension would look like this:

exten => 1234,1,Answer()

exten => 1234,2,Wait(2)

exten => 1234,3,Playback(hello-world)

exten => 1234,4,Wait(2)

exten => 1234,5,Hangup()

You can define the same extension with the n priority:

exten => 1234,1,Answer()

exten => 1234,n,Wait(2)

exten => 1234,n,Play(hello-world)

exten => 1234,n,Wait(2)

exten => 1234,n,Hangup()

You can start using the n priority at any point in the extension, as long as all the subsequent entries also use it:

exten => 1234,1,Answer()

exten => 1234,2,Wait(2)

exten => 1234,3,Play(hello-world)

exten => 1234,n,Wait(2)

exten => 1234,n,Hangup()

[9] An exception is the Asterisk RealTime Architecture (ARA). In an ARA system, the dialplan is stored in a database (e.g. MySQL) and read into Asterisk for each call, not simply when Asterisk is started. This allows an administrator to make dialplan changes on a running Asterisk server which take effect immediately. Nevertheless, this approach is not without significant disadvantages. You can learn more about realtime Asterisk at http://www.voip-info.org/wiki/view/Asterisk+RealTime .

[10] A typical "chicken or egg" problem. One can only understand an application if one understands the dialplan, and vice versa.

Pattern Matching

With what we know so far, we need to write a separate extension for each telephone number. As the system expands, this leads to unwieldy and error-prone dialplans. Say that, for our example, we need numbers 100 to 109 to play the "hello world" sound file. Our extensions.conf would look like this:

[general]

[widgets]

exten => 100,1,Answer()

exten => 100,2,Playback(hello-world)

exten => 100,3,Hangup()

exten => 101,1,Answer()

exten => 101,2,Playback(hello-world)

exten => 101,3,Hangup()

exten => 102,1,Answer()

exten => 102,2,Playback(hello-world)

exten => 102,3,Hangup()

exten => 103,1,Answer()

exten => 103,2,Playback(hello-world)

exten => 103,3,Hangup()

exten => 104,1,Answer()

exten => 104,2,Playback(hello-world)

exten => 104,3,Hangup()

exten => 105,1,Answer()

exten => 105,2,Playback(hello-world)

exten => 105,3,Hangup()

exten => 106,1,Answer()

exten => 106,2,Playback(hello-world)

exten => 106,3,Hangup()

exten => 107,1,Answer()

exten => 107,2,Playback(hello-world)

exten => 107,3,Hangup()

exten => 108,1,Answer()

exten => 108,2,Playback(hello-world)

exten => 108,3,Hangup()

exten => 109,1,Answer()

exten => 109,2,Playback(hello-world)

exten => 109,3,Hangup()

If we use a pattern, the same dialplan becomes instantly more compact and elegant:

[general]

[widgets]

exten => _10X,1,Answer()

exten => _10X,2,Playback(hello-world)

exten => _10X,3,Hangup()

The '_10X' extension describes the number range from 100 to 109.

	[image: image9.png]

	

	
	The terms pattern and regular expression are often casually interchanged; in general, what we are using in Asterisk is a pattern, though many programmers would use the term regular expression also.

Syntax

Dialplan patterns always begin with the underscore (_) character:

exten => _Pattern,Priority,Applikation
An Asterisk dialplan pattern can have the following elements:

[abc]
The digits a, b and c. For example, to match 34, 37, and 38:

exten => _3[478],1,NoOp(Test)

[a-b]
Any digit in the range a to b. For example, to match any number between 31 and 35:

exten => _3[1-5],1,NoOp(Test)

(e.g. [25-8] is also acceptable for the digits 2,5,6,7,8)

X
Any digit from 0 to 9. For example, to match any number between 300 and 399:

exten => _3XX,1,NoOp(Test)

Z
Any digit from 1 to 9. For example, to match any number between 31 and 39:

exten => _3Z,1,NoOp(Test)

N
Any digit from 2 to 9. For example, to match any number between 32 and 39:

exten => _3N,1,NoOp(Test)

.
Any number of digits of any kind. For example, to match all numbers that begin with 011:

exten => _011.,1,NoOp(Test)

	[image: image10.png]

	

	
	Don't use the '_.' pattern! This will also include special extensions such as i, t and h. Use _X. or _X if you need broad pattern matching.

!
This special 'wildcard' character will match as soon as the number dialled is unambiguous; i.e. when the number being dialled cannot match any other extension in the context. Once a match is made, the outgoing line is picked up and dialing proceeds in real-time with direct feedback (this is known as 'overlap dialing').

	[image: image11.png]

	

	
	A common error is to forget the underscore ("_") character at the beginning of the pattern. This convention is necessary because SIP devices, as configured in sip.conf, can have alphanumeric names (For example, in Asterisk, '333', 'loadingdock' and 'A31' are all acceptable names for a SIP device). It also means that if you forget to use the underscore, your extension will never match and you will never see an error message informing you of your mistake.

Testing a pattern using dialplan show
An example dialplan looks like this:

[general]

[my-phones]

exten => 23,1,Answer()

exten => 23,2,Playback(hello-world)

exten => 23,3,Hangup()

We can call dialplan show from the CLI (invoked with asterisk -r if Asterisk is already running) to verify that our dialplan has been loaded:

*CLI> dialplan show

[Context 'default' created by 'pbx_config']

[Context 'my-phones' created by 'pbx_config']

 '23' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

[Context 'parkedcalls' created by 'res_features']

 '700' => 1. Park() [res_f

eatures]

-= 2 extensions (4 priorities) in 3 contexts. =-

*CLI>

The output includes all the dialplan rules that Asterisk knows about. Notice that there is a 'parkedcalls' context that we haven't seen before; this is activated by default in features.conf and needn't concern us further. What if we are only interested in the my-phones context? We can make our request more specific with dialplan show my-phones:

*CLI> dialplan show my-phones

[Context 'my-phones' created by 'pbx_config']

 '23' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

-= 1 extension (3 priorities) in 1 context. =-

*CLI>

The command dialplan show can also be used to show what Asterisk will do if we dial a specific number. Say we want to dial '25' from a phone in the my-phones context. We can see what will happen with the command dialplan show 25@my-phones:

*CLI> dialplan show 25@my-phones

There is no existence of 25@my-phones extension

*CLI>

Nothing happens because there is no match for '25' in the context. If we dial '23' instead, we get this output:

*CLI> dialplan show 23@my-phones

[Context 'my-phones' created by 'pbx_config']

 '23' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

-= 1 extension (3 priorities) in 1 context. =-

*CLI>

If we want to check '23' against all the accessible contexts, we use dialplan show 23@:

*CLI> dialplan show 23@

[Context 'my-phones' created by 'pbx_config']

 '23' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

-= 1 extension (3 priorities) in 1 context. =-

*CLI>

Let's expand our dialplan with an additional context by editing extensions.conf like so:

[general]

[my-phones]

exten => 23,1,Answer()

exten => 23,2,Playback(hello-world)

exten => 23,3,Hangup()

[department-q]

exten => _2X,1,Answer()

exten => _2X,2,Playback(hello-world)

exten => _2X,3,Hangup()

Now we go back to the CLI and, after reloading the dialplan with the reload command, run dialplan show 23@:

*CLI> dialplan show 23@

[Context 'department-q' created by 'pbx_config']

 '_2X' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

[Context 'my-phones' created by 'pbx_config']

 '23' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

-= 2 extensions (6 priorities) in 2 contexts. =-

*CLI>

All the matching extensions are displayed. Let's try it with dialplan show 25@:

*CLI> dialplan show 25@

[Context 'department-q' created by 'pbx_config']

 '_2X' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

-= 1 extension (3 priorities) in 1 context. =-

*CLI>

There is only one match, in context department-q. In this example, if you dial '25' from a phone in the my-phones context, you still won't hear the 'hello world' message. Extension '25' only works for phones in the department-q context.

Pattern matching order

Employing pattern matching in your Asterisk dialplan, while very powerful, can be tricky. It is easy to assume that Asterisk runs through the dialplan in a completely sequential manner; while this is generally the case, it does prioritize patterns based on the quality of the match.

The reason for this is simple: more than one pattern might match a dialled number. If two extensions match a dialled number, Asterisk will always choose the better match. Before deciding which extension matches best, it processes the entire context.

An example:

[sales]

exten => _12X.,1,NoOp{12X}

exten => 12345,1,NoOp(12345}

exten => _1234.,1,NoOp{1234.}

It is not immediately clear which extension is executed when we dial '12345'. To find out, we use dialplan show 12345@sales:

*CLI> dialplan show 12345@sales

[Context 'sales' created by 'pbx_config']

 '12345' => 1. NoOp(12345}) [pbx_c

onfig]

 '_1234.' => 1. NoOp{1234.}() [pbx_c

onfig]

 '_12X.' => 1. NoOp{12X}() [pbx_c

onfig]

-= 3 extensions (3 priorities) in 1 context. =-

*CLI>

Asterisk shows all the hits, but gives extension 12345,1,NoOP{12345} first priority. The highest priority extension is always displayed at the top.

Let's try it with '12346' using the command dialplan show 12346@sales:

*CLI> dialplan show 12346@sales

[Context 'sales' created by 'pbx_config']

 '_1234.' => 1. NoOp{1234.}() [pbx_c

onfig]

 '_12X.' => 1. NoOp{12X}() [pbx_c

onfig]

-= 2 extensions (2 priorities) in 1 context. =-

*CLI>

Again, the pattern with the best match to the dialled digits is listed first.

	[image: image12.png]

	

	
	The order in which the patterned extensions appear in the dialplan makes no difference. Patterned extensions are matched strictly in order of match precision.

A special case - the pattern "_." in Asterisk 1.2

To be sure that an Asterisk administrator's job doesn't become too easy, Digium has changed the expected behavior for the "_." pattern in Asterisk 1.2. Though the pattern is the most general and should be therefore assigned the lowest priority, the behavior is opposite the expected behavior.

	[image: image13.png]

	

	
	In Asterisk 1.2, the extension "_." always gets the highest priority!

	[image: image14.png]

	

	
	Note that the show dialplan command will work in Asterisk 1.4 but is deprecated; henceforth, examples for Asterisk 1.2 use show dialplan, while dialplan show is used for examples in Asterisk 1.4.

Let's try adding the extension "_." to our previous dialplan example:

[sales]

exten => _12X.,1,NoOp{12X}

exten => 12345,1,NoOp(12345}

exten => _1234.,1,NoOp{1234.}

exten => _.,1,NoOp{Bingo}

When we try testing '12346' with dialplan show 12346@sales, we get the following output:

*CLI> dialplan show 12346@sales

[Context 'sales' created by 'pbx_config']

 '_1234.' => 1. NoOp{1234.}() [pbx_c

onfig]

 '_12X.' => 1. NoOp{12X}() [pbx_c

onfig]

 '_.' => 1. NoOp{Bingo}() [pbx_c

onfig]

-= 3 extensions (3 priorities) in 1 context. =-

*CLI>

In Asterisk 1.2, show dialplan 12346@sales gives a very different result:

*CLI> show dialplan 12346@sales

[Context 'sales' created by 'pbx_config']

 '_.' => 1. NoOp{Bingo}() [pbx_c

onfig]

 '_1234.' => 1. NoOp{1234.}() [pbx_c

onfig]

 '_12X.' => 1. NoOp{12X}() [pbx_c

onfig]

-= 3 extensions (3 priorities) in 1 context. =-

*CLI>

This is why it is preferable to use "_X." as the wildcard pattern (if we use a wildcard pattern at all!). The following dialplan example is processed identically in Asterisk 1.2 and 1.4:

[sales]

exten => _12X.,1,NoOp{12X}

exten => 12345,1,NoOp(12345}

exten => _1234.,1,NoOp{1234.}

exten => _X.,1,NoOp{Bingo}

The priorities appear as follows in both versions:

*CLI> dialplan show 12346@sales

[Context 'sales' created by 'pbx_config']

 '_1234.' => 1. NoOp{1234.}() [pbx_c

onfig]

 '_12X.' => 1. NoOp{12X}() [pbx_c

onfig]

 '_X.' => 1. NoOp{Bingo}() [pbx_c

onfig]

-= 3 extensions (3 priorities) in 1 context. =-

*CLI>

Include statements

Includes are a powerful tool for simplifying and organizing larger dialplans. Using an include statement, you can include other contexts in the current context.

Syntax

include => name-of-the-other-context

Example

[general]

[sales]

include => internal

include => external

[internal]

exten => 2000,1,Dial(SIP/2000)

[external]

exten => 17005551212,1,Dial(SIP/5551212)

Order of execution when using include statements

Asterisk will always look for a match in the current context before referencing any included contexts. If a matching entry is found, that entry is used. If no matching entry is found, Asterisk will look for a match in the first included context, then the next, and so on. It is also possible to have nested includes; that is, includes within includes.

In case of doubt, you can verify what entry Asterisk is using to handle a call by entering dialplan show number@name-of-context in the Asterisk CLI.

	[image: image15.png]

	

	
	Users of Asterisk 1.2 use show dialplan instead of dialplan show.

A few examples:

[general]

[sales]

include => internal

include => external

[internal]

exten => 2000,1,Dial(SIP/2000)

[external]

exten => 17005551212,1,Dial(SIP/5551212)

Say we want to understand how Asterisk is handling a call to 2000 in the sales context. To do that, we enter dialplan show 2000@sales in the CLI:

*CLI> dialplan show 2000@sales

[Included context 'internal' created by 'pbx_config']

 '2000' => 1. Dial(SIP/2000) [pbx_c

onfig]

-= 1 extension (1 priority) in 1 context. =-

*CLI>

If we then expand the sales context like so:

[general]

[verkauf]

include => internal

include => external

exten => 2000,1,Answer()

exten => 2000,2,Playback(hello-world)

exten => 2000,3,Hangup()

[internal]

exten => 2000,1,Dial(SIP/2000)

[external]

exten => 17005551212,1,Dial(SIP/5551212)exten => 03012345678,1,Dial(SIP/

03012345678)

We will see this CLI output::

*CLI> dialplan show 2000@sales

[Context 'sales' created by 'pbx_config']

 '2000' => 1. Answer() [pbx_c

onfig]

 2. Playback(hello-world) [pbx_c

onfig]

 3. Hangup() [pbx_c

onfig]

[Included context 'internal' created by 'pbx_config']

 '2000' => 1. Dial(SIP/2000) [pbx_c

onfig]

-= 2 extensions (4 priorities) in 2 contexts. =-

*CLI>

Asterisk will play the hello-world sound file and not send the call to 2000, even though the include occurs first in the dialplan. This is because Asterisk will always look for a match in the current context before checking the included contexts.

Time-conditional include statements

An include statement can be made conditional upon the time of day. This makes it easy to implement different day and night behaviors.

Syntax

include => context|<time>|<day>|<day-of-month>|<month>

The day and month are specified using the first three letters of the full name. For example, weekdays are specified mon, tue, wed, thu, fri, sat, sun, and months are specified jan, feb, mar, apr, etc. The time is specified in 24 hour format.

Example

A business is open from 9:00 a.m. until 5:00 p.m. Monday to Friday and from 9:00 a.m. to 2:00 p.m. Saturday. The dialplan would look like this:

; Day

 include => open|09:00-17:00|mon-fri|*|*

 include => open|09:00-14:00|sat|*|*

include => closed

[open]

exten => 2000,1,Dial(SIP/2000)

[closed]

exten => 2000,1,VoiceMail(2000,u)?

Chapter 3. Programming in the dialplan

In Asterisk, functions or programs can be implemented either externally, through an AGI script (in much the same way that a CGI script can add functionality to a web page) or internally, through functions and applications in the dialplan. This chapter will focus strictly on the internal functions; AGI is treated in depth in a separate chapter.

The dialplan is defined in the extensions.conf configuration file. The dialplan itself looks much like a BASIC program. The administrator can implement features and call flow using a simple scripting language.

Programming "How-to"

A major challenge in writing a book like this one is that every reader comes to it with a different level of previous experience. A book on Asterisk might be read by administrators, programmers, telephone specialists, and hobbyists, all with different levels of practical experience. To take full advantage of Asterisk, a basic level of programming skill and a grasp of the fundamentals is necessary. Through this how-to, we hope to provide the newcomer with the basic understanding needed to make useful dialplans, through the use of plenty of examples and with frequent reference to Appendix B, Applications in the dialplan. You will probably recognize some of the material from other chapters. This little how-to should give you the overview you need to get started.

Program structure

Each telephone number defined in the Asterisk dialplan (/etc/asterisk/extensions.conf) is really a small program. In Asterisk, the program is called an "extension." An extension looks like this:

exten => 1001,1,Answer()

exten => 1001,n,Playback(hello-world)

exten => 1001,n,Hangup()

Priorities may also numbered sequentially:

exten => 1001,1,Answer()

exten => 1001,2,Playback(hello-world)

exten => 1001,3,Hangup()

The two extensions depicted here are functionally identical. If you use n, however, it makes adding and deleting entries in the extension much easier later on.

Variables

Use the application Set() to create and change variables:

exten => 1002,1,Set(Favoriteanimal = "Tiger")

exten => 1002,n,Set(Favoritenumber = 23)

Use the syntax ${VARIABLENAME} to read and print variables. You can print variable values on the CLI with NoOp() (with verbosity level 3 and up):

exten => 1003,1,NoOp(${Favoriteanimal})

exten => 1003,n,NoOp(${Favoritenumber})

There are different kinds of variables:

· Global variables

Valid anywhere in the dialplan and created or modified with Set(<variable>=<content>,g):
exten => 1004,1,Set(READABLEANYWHERE = 23,g)

exten => 1004,n,NoOp(${READABLEANYWHERE})

· Channel variables

Valid only in the current channel (a channel could be a connection between two people having a phone conversation). Created or modified with Set(<variable>=<content>) (without the g):

exten => 1005,1,Set(READABLEHEREONLY= 42)

exten => 1005,n,NoOp(${READABLEHEREONLY})

· System variables

These dynamic variables are set by Asterisk and may be called in the dialplan without needing to create them. A frequently used system variable is ${EXTEN}:

exten => 1006,1,NoOp(Dialed number: ${EXTEN})

See also: the section called “Variables”

Labels and Goto()

Goto() lets you jump from one dialplan entry to another. If you are using n priorities, this can be problematic. The solution is to use labels to tag specific entries and then call the entry by label in Goto().

Examples:

· Within an extension:

· exten => 1007,1,Answer()

· exten => 1007,n(Start),Wait(1)

· exten => 1007,n,Playback(hello-world)

exten => 1007,n,Goto(Start)

· Between extensions:

· exten => 1008,1,Answer()

· exten => 1008,n,Goto(1009,Ping)

· exten => 1009,1(Ping),Playback(hello-world)

· exten => 1009,n,Wait(2)

· exten => 1009,n,Goto(1010,Pong)

· exten => 1010,1(Pong),Playback(tt-weasels)

· exten => 1010,n,Wait(2)

exten => 1010,n,Goto(1009,Ping)

· Between contexts:

· [hq]

· exten => 1011,1,Answer()

· exten => 1011,n,Playback(hello-world)

· exten => 1011,n,Goto(sales,1012,1)

· [sales]

· exten => 1012,1,Playback(hello-world)

exten => 1012,n,Hangup()

See also: the section called “Goto()”

While() loops

Use While() to run loops in the dialplan:

exten => 1013,1,Answer()

exten => 1013,n,Set(i=1)

exten => 1013,n,While($[${i} < 10])

exten => 1013,n,SayNumber(${i})

exten => 1013,n,Wait(1)

exten => 1013,n,Set(i=$[${i} + 1])

exten => 1013,n,EndWhile()

exten => 1013,n,Hangup()

See also: the section called “While()”

GotoIf() conditional

You can jump to other parts of the dialplan depending on a specific condition being met with GotoIf():

exten => 1014,1,Answer()

exten => 1014,n,Set(Favoritestation = 0815)

exten => 1014,n,NoOp(Check to see if ${Favoritestation} is calling.)

exten => 1014,n,GotoIf($[${CALLERID(num) = ${Favoritestation}]?yes,no)

exten => 1014,n(yes),Playback(hello-world)

exten => 1014,n,Hangup()

exten => 1014,n(no),Playback(tt-monkeys)

exten => 1014,n,Hangup()

See also: the section called “GotoIf()”

Gosub() subroutines

With Gosub() the call is directed to a subroutine; it can be returned to the intiating priority with Return() wieder zurück:

exten => 1015,1,Gosub(cid-set)

exten => 1015,n,Dial(SIP/${EXTEN})

exten => 1015,n(cid-set),Set(CALLERID(all)=Apfelmus GmbH <012345678>)

exten => 1015,n,Return()

See also: the section called “Gosub()”, the section called “GosubIf()”, the section called “Return()”, the section called “Macro()”
Variables

A variable is a placeholder for an actual value. Exactly what that value is depends on the kind of variable. In Asterisk, variables can contain numbers, letters and strings (sequences of letters and numbers). Variables are useful because they let us create rules for call flow that apply in changing circumstances and make it easier to accommodate future changes in the telephone application or system.

	[image: image16.png]

	

	
	If you've never worked with variables before, we recommend you read an introduction to the subject at http://en.wikipedia.org/wiki/Variables#In_computer_programming .

In Asterisk, variables have varying scope. There are local variables (called channel variables in Asterisk), which can only set values for the current, active channel, and global variables, which set values for all channels. We should already be familiar with some of the variables Asterisk sets from our exposure to them as configuration parameters in the Asterisk configuration files (such as sip.conf, for example). We also have the freedom to define our own variables and use them in configuration files.

Expanding variables in an extension

The value of a variable can be obtained using the syntax ${VARIABLENAME}. There are variables that are automatically set by Asterisk. For example, the called number is always stored in the Asterisk system variable ${EXTEN}. Using patterns and variables, it is often possible to dramatically compress a long dialplan.

Before:

exten => 100,1,Dial(SIP/100)

exten => 101,1,Dial(SIP/101)

exten => 102,1,Dial(SIP/102)

exten => 103,1,Dial(SIP/103)

exten => 104,1,Dial(SIP/104)

exten => 105,1,Dial(SIP/105)

exten => 106,1,Dial(SIP/106)

exten => 107,1,Dial(SIP/107)

exten => 108,1,Dial(SIP/108)

exten => 109,1,Dial(SIP/109)

After:

exten => _10X,1,Dial(SIP/${EXTEN})

General considerations

Variable names needn't be in all uppercase as in our examples, nor are user-defined variables case-sensitive. It is a good idea to use uppercase variable names nonetheless because it makes the variables easier to identify and the dialplan code easier to read. The primary disadvantage of this is that it means you cannot distinguish variable names based on case. For example, ${FOO} is considered the same as ${foo}.

	[image: image17.png]

	

	
	Asterisk system variables such as ${EXTEN} must always be uppercase.

String variables

String variables (meaning variables that contain text and not numbers) should be defined using double quotes, though Asterisk will still accept them without double quotes - the following two entries are functionally identical:

exten => 1234,1,Set(FRUIT=Apple)

exten => 1234,2,Set(FRUIT="Apple")

If the string contains commas or spaces, you must use double quotes:

exten => 1234,1,Set(FRUITTYPES="Apple, Pear, etc.")

This is why it is a good idea to get into the habit of using them for any string variables you define.

Reserved characters

Sometimes a variable will contain reserved characters (characters that have special functions and are interpreted differently). For example, if you want to variable to contain the underscore character ("_") you must use an "escape" character to tell the dialplan interpreter that it should ignore the reserved character. The following characters must be escaped when used in a variable:

[] $ " \

The escape character in extensions.conf is "\" (backslash):

Example:

exten => 1234,1,Set(AMOUNT="\$10.00")

Similarly, if you want to use the backslash character in a variable, you must escape it:

exten => 1234,1,Set(ROOMNUMBER="48\\10")

Integers

If a variable contains an integer, it can have no more than 18 digits. Anything larger will cause an error which will be recorded in the log file.

	[image: image18.png]

	

	
	If you need to work with larger integers or floating point numbers, you can use an AGI script (see ???).

Defining global variables in extensions.conf
Global variables are defined at the beginning of extensions.conf. You must place them in the special [globals] context, which follows [general].

Example:

[general]

[globals]

RINGTIME=90

[from-intern]

exten => _XXX,1,Dial(SIP/${EXTEN},${RINGTIME})

exten => _XXX,n,VoiceMail(${EXTEN})

Defining variables with Set()

Set() is used to define a variable inside an extension.[11]
Syntax

Set(<variable1>=<value1>[,<variable2>=<value2>][,<option>])

Setting option g makes the variable global; without it, the variable is treated as a local channel variable.

Example:

; Set a global variable:

exten => 10,1,Set(RINGTIME=90,g)

; Set a local channel variable:

exten => 10,2,Set(FAVORITEFRUIT="Apple")

; Set two channel variables at once:

exten => 10,3,Set(VAR1=10,VAR2=23)

; Print variables to the CLI

exten => 10,4,NoOp(RINGTIME = ${RINGTIME})

exten => 10,5,NoOp(FAVORITEFRUIT = ${FAVORITEFRUIT})

exten => 10,6,NoOp(VAR1 = ${VAR1})

exten => 10,7,NoOp(VAR2 = ${VAR2})

Inheritance of channel variables

If new channels are spawned while a conversation is in progress, they will have their own channel variables.

Single-level inheritance

Sometimes you want to have a channel variable persist into the spawned channel. You can do this by prefixing the variable with an "_" (underscore) character. When the variable is inherited by the spawned channel, Asterisk automatically removes the prefix. This ensures that the variable is inherited only once.

Example:

exten => 1234,1,Set(_CAKE="Marble cake")

Multi-level inheritance

If you need unlimited inheritance of a channel variable, you can do this by prefixing the variable with two "_" (underscore) characters. Variables prefixed in this way will always be inherited by spawned channels.

	[image: image19.png]

	

	
	Asterisk makes no distinction between variable names that are preceded with an underscore and those that are not. In the example below, a variable with multi-level inheritance ("__CAKE") is rendered uninheritable by the subsequent entry:

exten => 1234,1,Set(__CAKE="Marble cake")

exten => 1234,n,Set(CAKE="Marble cake")

Example:

exten => 1234,1,Set(__CAKE="Sponge cake")

When calling an inherited variable, it doesn't matter if it is called with a prefix or not. These entries will give the same output in the CLI:

exten => 1234,1,NoOp(${__CAKE})

exten => 1234,n,NoOp(${CAKE})

System channel variables

The following list describes the more important system channel variables. These variables may be read but not overwritten by entries in extensions.conf, as they are pre-defined by Asterisk.

	[image: image20.png]

	

	
	A complete list of all the pre-defined variables may be found in doc/README.variables (Asterisk 1.2) and doc/channelvariables.txt (Asterisk 1.4). Deprecated variables are not included in this list. For example, the variable ${CALLERIDNUM} (previously commonly used) is not in this list; it is preferable to use the Asterisk function ${CALLERID(num)} instead.

	[image: image21.png]

	

	
	It is a good practice to replace dialplan code that depends on deprecated variables or functions with code that uses the recommended replacements. This will reduce the chance of an installation breaking when you upgrade Asterisk.

System variables relevant to specific Asterisk functions are covered again in their respective chapters.[12]
	[image: image22.png]

	

	
	Some of the "variables" described here are not really variables but in fact built-in functions. In practice, they often play a similar role, so they are listed here for convenience.

${ANSWEREDTIME}
The total elapsed time for the active connection (in other words, the number of seconds since the conversation started).

${BLINDTRANSFER}
The name of the channel on the other side of a blind transfer.

${CHANNEL}
Name of the current channel.

${CONTEXT}
Name of the current context.

${EPOCH}
Current Unix time (total number of seconds elapsed since the beginning of the Unix "epoch", which began at midnight UTC, January 1st, 1970)

${EXTEN}
Currently dialed extension.

${ENV(VARIABLENAME)}
Environment variable VARIABLENAME
${HANGUPCAUSE}
Cause of connection hang-up.

${INVALID_EXTEN}
Used in the i extension and contains the dialed extension.

${PRIORITY}
Current priority in the current extension.

${TRANSFER_CONTEXT}
Context of a transferred call.

${UNIQUEID}
The unique ID for the current connection.

${SYSTEMNAME}
The system name as defined by systemname in /etc/asterisk/asterisk.conf.

Manipulating variables

Variables are most useful when we can change their contents at execution time. This gives us the flexibility to impart complex and powerful behavior to our Asterisk system.

Substring

In general, a string consistes of a sequence of individual characters. The size of a string is determined by the number of characters contained in it. For example, the string "apple tree" has 10 characters (we must include the space). Any string can be broken into substrings. For example, "apple", "tree", "app" and "le tre" are all valid substrings of "apple tree". In theory, a string can be of any length; this entire book could be contained in a single string, though it would be impractical. Manipulation of strings is an important technique in programming applications. Asterisk lets you manipulate strings and substrings using the : (colon) character. Using the : character, you can extract a specified portion of an existing string variable.

Syntax

${VARIABLENAME[:start[:length]]}

Examples

Many telephone systems require that a prefix digit be dialled in order to get an outside line (In North America, this is usually "9"). The target number, however, cannot include this prefix digit. If we dial 9-1-202-7075000, we can store the actual outside number in the ${OUTGOINGNUMBER} using the following dialplan entry.[13]

exten => _0X.,1,Set(OUTGOINGNUMBER=${EXTEN:1})

If the length option is omitted, the rest of the string is taken automatically.

What if we only need the last seven digits of the dialed number? I this case we use a negative number for the start parameter. The following entry would store 7075000 from our example above in the variable ${LOCALNUMBER}.[14]
exten => _0X.,1,Set(LOCALNUMBER=${EXTEN:-7})

We can also capture just the area code:

exten => _0X.,1,Set(AREACODE=${EXTEN:2:3})

	[image: image23.png]

	

	
	Obviously, readers in other parts of the world (e.g. the United Kingdom, Australia, or elsewhere) will have different national dialplans which impact how outside numbers should be processed. Some countries have area and city codes which are variable in length; in those cases, this kind of number filtering will not be practical.

Here, then, is how we might extract useful information from a dialed number:

exten => _9X.,1,Set(AREACODE=${EXTEN:2:3})

exten => _9X.,n,Set(LOCALNUMBER=${EXTEN:5})

[11] see also the section called “Set()”
[12] A classic "Which comes first, the chicken or the egg?" problem!

[13] For our curious readers: this is the general information number for the Library of Congress in Washington, D.C.

[14] Under the original rules of the NANP (North American Numbering Plan) the last seven digits of a number constituted the local portion of the number. That is, if your telephone number was in the same area code as the dialed number, you needed only to dial seven digits. Population growth and density means that the number spaces of many area codes are becoming depleted. To minimize disruption, the NANP has been extended with overlay dialplans. In areas with overlay plans, two telephone lines on the same street, or even in the same building, may have different area codes. You are in an overlay area if you are required to dial 10 digits for local calls. In this case, a local number filter as depicted above will not be appropriate. Also, many area codes covering larger areas still have portions of the number space that are treated as long distance. You can read more about this at http://en.wikipedia.org/wiki/Overlay_plan .

Special extensions

Because all the programming logic must occur via extensions, we need some additional system-defined extensions.

The h extension

The h is the standard "hang-up" extension. The h extension, if it is configured, is called when a caller hangs up the phone. Note that as soon as this happens, the content of ${EXTEN} changes to h.

Example

Say we want the global variable CONNECTIONS to reflect the number of currently active conversations at any given time. This means we need the value of CONNECTIONS to increase by one every time a connection is initiated and decrease by one every time someone hangs up. The following dialplan illustrates the basic idea:

[global]

CONNECTIONS=0

[from-internal]

exten => _X.,1,Set(CONNECTIONS=$[${CONNECTIONS} + 1]|g)

exten => _X.,2,Dial(SIP/${EXTEN})

exten => h,1,Set(CONNECTIONS=$[${CONNECTIONS} - 1]|g)

The i extension

To make a context gracefully handle every conceivable circumstance, we use the special extension i ("i" stands for invalid) which handles all dialed numbers which are not explicitly handled handled within the context. Again, as with the h extension, once the i extension is invoked the ${EXTEN} will no longer contain the dialed number. To get the dialed number while in the i extension, use ${INVALID_EXTEN}.

Example

In our example business, Widgets, Inc., employees in department B can only dial extensions 100 to 199. Callers dialing any other numbers hear the message, "I'm sorry. That is not a valid extension. Please try again."

[department-b]

exten => _1XX,1,Dial(${EXTEN})

exten => i,1,NoOp(An invalid number ${INVALID_EXTEN} was dialed.)

exten => i,2,Answer()

exten => i,3,Playback(invalid)

exten => i,4,Hangup()

The o and a extensions

If operator=yes is set in voicemail.conf, the call will be directed to the o extension (o is for operator, kids!) if the caller presses "0".

Pressing * (asterisk) will direct the call to the a extension (abort).

The t and T extensions

The t and T extensions are for handling timeouts in the context.

t extension

If there is no input in an IVR menu within a certain time, the t extension is called.

Example:

[mainmenu]

exten => 10,1,Answer()

exten => 10,n,Background(marryme) ; "Marry me? Press 1 for y

es, 2 for no."

exten => 1,1,Playback(thank-you-cooperation) ; 1 => "Thank you."

exten => 1,n,Hangup()

exten => 2,1,Playback(hangup-try-again) ; 2 => "Hang up and try ag

ain."

exten => 2,n,Hangup()

exten => t,1,Hangup() ; no input => hang up

T extension

The T extension is called after the absolute timeout has been exceeded. You can set this timeout value with Set(TIMEOUT(absolute)=<seconds>).

	[image: image24.png]

	

	
	Be careful not to have any spaces before and after the "=" character.

The timer starts whenever the timeout value is set (in other words, it does not automatically start with the connection, it must be started explicitly with the Set() command). Set(TIMEOUT(absolute)=0) deactivates the absolute timeout.

Example:

exten => 20,1,Answer()

exten => 20,2,Set(TIMEOUT(absolute)=120)

exten => 20,3,Playback(hello-world)

exten => 20,4,Wait(1)

exten => 20,5,Goto(3)

exten => T,1,Wait(1)

exten => T,2,Playback(thank-you-for-calling)

exten => T,3,Wait(1)

exten => T,4,Hangup()

The s extension

The first entry in any extension is always the name or number dialed by the caller. When a call comes in from the PSTN, however, Asterisk doesn't know what was dialed or whom the caller is trying to reach. For any scenario in which we cannot determine the number dialed, we use the s extension.

	[image: image25.png]

	

	
	If you are using an ATA device (analog telephone adapter) you don't need the s extension. You can configured the dialled number in the configuration interface (often a web interface) for the ATA.

Example:

exten => s,1,Answer()

exten => s,2,Wait(1)

exten => s,3,Play(tt-monkeys)

exten => s,4,Wait(1)

exten => s,5,Hangup()

Macros

A macro is a kind of subroutine. It can contain complex workflows but is called through a single entry. This reduces repetition in the dialplan and makes it cleaner and smaller. A simple example might look like this:

[macro-incoming]

exten => s,1,Dial(SIP/${MACRO_EXTEN},10)

exten => s,n,VoiceMail(${MACRO_EXTEN})

Ein solches Macro würde im rest des Dialplanes dann wie folgt aufgerufen werden:

[sales]

exten => _2XXX,1,Macro(incoming)

[building-mgr]

exten => _2XXX,1,Macro(incoming)

The effect is not quite so impressive with a two-line macro as it would be with a much longer macro, but the advantages of such an approach should be clear.

The use of macros tends to divide the Asterisk user community into two groups. One feels that macros make the dialplan easier to understand, the other feels that they make the dialplan confusing. We encourage you to draw your own conclusions!

Macro basics

When defining macros, take care to note the following points:

· When defining a macro, only one extension - the s extension - is allowed.

· The original ${EXTEN} and ${CONTEXT} variables cannot be used inside a macro. We must use ${MACRO_EXTEN} and ${MACRO_CONTEXT} instead.

· When calling a macro, additional comma- (",") or pipe-separated ("|") arguments can be supplied. These arguments are called within the macro with ${ARGn} (where n is a positive integer indicating which argument in the sequence).

· A macro is defined in square brackets ([macro-macroname]) and is called with the Macro() application in an extension.

More information on macros may be found at the section called “Macro()”.

	[image: image26.png]

	

	
	The application MacroExclusive() ensures that the specific macro can only be called once at any given time. If another channel is calling the macro, no other channel can call it until it completes (see the section called “MacroExclusive()”).

Priority jumping is deprecated

For a long time, priority jumping was a standard way of moving a call about the dialplan. Specific applications (e.g. Dial()) would elevate the priority by 101 under certain circumstances. This feature is now officially deprecated. Basically, this means that while it is currently still supported, eventually it will be removed. Anyone who continues to use it is making their dialplans vulnerable to failure after an upgrade.

In working with Asterisk you will encounter dialplan configuration examples on the Internet; it is not uncommon to stumble upon grossly outdated examples that use deprecated constructs. In professional practice you should use the most current code constructions and versions of Asterisk. The software is always being updated, but deprecated features are not maintained.

In summary: if you want the operation of your Asterisk systems to be as predictable as possible, keep your code current!

Chapter 4. Voicemail

Introduction

In this chapter we'll go over the capabilities of Asterisk's built-in voicemail system. Note that this is different from an Interactive Voice Response System (IVR), which is covered in depth in Chapter 5, Interactive Voice Response (IVR).

Voicemail is an essential component of any professional telephone system.[15].

[15] As a humorous homage to the popular Nortel Meridian® PBX voicemail system called Meridian Mail®, the Asterisk developers have named the Asterisk voicemail system Comedian Mail.

Example implementations

The examples which follow should give you a quick overview of typical configurations. Specifics and special features are covered in the following section the section called “Dialplan applications”.

The Robinson Family

In the course of modernizing their home, the Robinson family has decided to install an Asterisk system, including a voicemail system with a mailbox for every family member.

Tasks

Each family member needs a mailbox:

	Name
	Extension
	Notes

	Dave Robinson
	200
	Standard voice mailbox

	Colleen Robinson
	201
	Standard voice mailbox

	Matthew Robinson
	202
	Normal voice mailbox with e-mail notification (in this case, voice messages are attached as an audio file to a an e-mail and sent to a specified e-mail address)

	Lisa Robinson
	203
	Normal voice mailbox with e-mail notification with deletion (in this case, voice messages are attached as an audio file to an e-mail, sent to a specified e-mail address, but the original message is deleted from the Comedian Mail system immediately)

Configuration

The voicemail.conf looks like this:

[general]

format = wav

attach = yes

[default]

; Syntax for new entries looks like this:

; MailboxNumber => password,name,e-mail,pager,options

; (usually, the MailboxNumber is the same as the Extension)

200 => 1234,Dave Robinson

201 => 1234,Colleen Robinson

202 => 1234,Matthew Robinson,matt@robinsonfamily.name

203 => 1234,Lisa Robinson,lisa@robinsonfamily.name,,delete=yes

In extensions.conf, we send an unanswered call to voicemail like so:

[robinson-family]

; If nobody picks up within 30 seconds, the call is sent to voicemail

; If the extension is busy, the call is sent to voicemail

exten => _20[0-3],1,Set(TARGETNO=${EXTEN})

exten => _20[0-3],n,Dial(SIP/${EXTEN},30)

exten => _20[0-3],n,Goto(s-${DIALSTATUS},1) ; routes the call to the st

atus priority (NOANSWER,BUSY,CHANUNAVAIL,CONGESTION,ANSWER)

exten => s-NOANSWER,1,VoiceMail(${TARGETNO},u) ; Person at extension "is

 unavailable" message

exten => s-BUSY,1,VoiceMail(${TARGETNO},b) ; Person at extension "is

 busy" message

exten => s-ANSWER,1,Hangup() ; To be safe, clean up the

call after an answer by hanging up

exten => _s-.,1,Goto(s-NOANSWER,1) ; Handle any unhandled stat

us the same way we handle NOANSWER

; Check your voicemail from your own extension by dialling "250"

exten => 250,1,VoiceMailMain(${CALLERID(num)})

A more elegant implementation can use a macro:

[robinson-family]

exten => _20[0-3],1,Macro(normal|SIP/${EXTEN}|${EXTEN})

exten => 250,1,VoiceMailMain(${CALLERID(num)})

[macro-normal];

; ${ARG1} - extension(s) being called (e.g. SIP/123&SIP/124)

; ${ARG2} - Mailbox (usually the same as ${MACRO_EXTEN})

exten => s,1,Dial(${ARG1},30) ; ring extension for a maxim

um of 30 seconds

exten => s,n,Goto(s-${DIALSTATUS},1) ; go to status priority (NOA

NSWER,BUSY,CHANUNAVAIL,CONGESTION,ANSWER)

exten => s-NOANSWER,1,VoiceMail(${ARG2},u) ; Person at extension "is un

available" message

exten => s-BUSY,1,VoiceMail(${ARG2},b) ; Person at extension "is bu

sy" message

exten => s-ANSWER,1,Hangup() ; To be safe, clean up the c

all after an answer by hanging up

exten => _s-.,1,Goto(s-NOANSWER,1) ; Handle any unhandled statu

s the same way we handle NOANSWER

Widgets, Inc.

A business like Widgets, Inc. (introduced in ???) will need a more comprehensive voicemail system. In this example, you'll be able to see how much you can do with Comedian Mail.

Tasks

The default settings for each voice mailbox are:

· Voicemails are saved in WAV format.

· Each mailbox is limited to a maximum of 200 messages.

· The maximum length of a voice message is 5 minutes.

· Voice messages are stored on the system and also sent to the user as an e-mail attachment.

Beyond these default settings, individual departments have additional needs and wants for their mailboxes:

	Mailbox
	Department/Title
	Notes

	150
	Building manager on duty
	· Message notifications are sent only to a pager, not e-mail

· Callers may listen to their messages before sending and, if necessary, re-record them.

· After the recipient has listened to the message, she can return the call directly from the voicemail menu.

	160 - 169
	IT
	· In the IT department, every staff member has his own mailbox.

· Calls route to voice mail only if nobody in the department answers. No messages can be left if all extensions are busy.[a]

	802
	Sales (Domestic)
	· No e-mail notifications are sent.[b]
· No password is required to listen to messages.

	803
	Sales (International)
	· No e-mail notifications are sent.

· No password is required to listen to messages.

	201
	Division Manager
	· Callers may listen to their messages before sending and, if necessary, re-record them.

· After the recipient has listened to the message, she can return the call directly from the voicemail menu.

	202
	Assistant Manager
	· Callers may listen to their messages before sending and, if necessary, re-record them.

· After the recipient has listened to the message, she can return the call directly from the voicemail menu.

	804
	Reception
	· After the recipient has listened to the message, she can return the call directly from the voicemail menu.

	[a] This is a safety measure to prevent a complete denial of service in the event of a major IT outage; if the entire company staff call in and leave a message, the IT department would never be able to listen to them all.

[b] We don't want e-mail sent to a specific person because there is more than one staff member in the sales group. We might, however, configure all the extensions in the group to illuminate the Message Waiting Indicator light if there are new messages in the mailbox.

Configuration

The voicemail.conf for Widgets, Inc. looks like this:

[general]

; Messages are stored in higher-quality WAV format.

format = wav

; E-mail notifications sent by the system have voicemail@widgets-inc.biz

; as the From: address

serveremail = voicemail@widgets-inc.biz

; We set a maximum of 200 messages per mailbox.

maxmsg = 200

; The maximum message length is 5 minutes. The message length is set in

seconds (5 x 60 = 300)

maxmessage = 300

; We set the text for the e-mail notifications.

; The entire text must fit on one line!

emailbody = Hello, ${VM_NAME},\n\nyou have a new voicemail message from

${VM_CALLERID} in your mailbox ${VM_MAILBOX}. To listen to your new mess

ages, dial 800.\n\n-- Asterisk Voicemail System\n

; Text for the pager notifications.

; The entire text must fit on one line!

pagerbody = New voicemail from ${VM_CALLERID} at ${VM_DATE}.

; Attach messages to e-mail notifications?

attach = yes

[default]

; Syntax for new entries looks like this:

; MailboxNumber => password,name,e-mail,pager,options

150 => 1234,Building Manager,,pager.buildingmgr@widgets-inc.biz,review=y

es|callback=internal-extensions

802 => 1234,Sales (Domestic)

803 => 1234,Sales (International)

201 => 1234,Chelsea Important,bob.important@widgets-inc.biz,,review=yes|

callback=internal-extensions

202 => 1234,Rick Important,rick.important@widgets-inc.biz,,review=yes|ca

llback=internal-extensions

804 => 1234,Reception,reception@widgets-inc.biz,,review=yes

Calls are sent to voicemail in extensions.conf like so:

[building-mgr]

include => internal-extensions

include => voicemail-buildingmgr

[it]

include => internal-extensions

include => voicemail-easyaccess

include => voicemail-generalaccess

[managers]

include => internal-extensions

include => voicemail-easyaccess

[reception]

include => internal-extensions

include => voicemail-easyaccess

[sales-domestic]

include => internal-extensions

include => voicemail-sales-domestic

[sales-international]

include => internal-extensions

include => voicemail-sales-international

[shipping]

include => internal-extensions

include => voicemail-easyaccess

[production]

include => internal-extensions

include => voicemail-easyaccess

[others]

[macro-simple];

; ${ARG1} - extension(s) being called (e.g. SIP/123&SIP/124)

; ${ARG2} - Mailbox (usually the same as ${MACRO_EXTEN})

exten => s,1,Dial(${ARG1},30) ; ring extension for a maxim

um of 30 seconds

exten => s,n,Goto(s-${DIALSTATUS},1) ; go to status priority (NOA

NSWER,BUSY,CHANUNAVAIL,CONGESTION,ANSWER)

exten => s-NOANSWER,1,VoiceMail(${ARG2},u) ; Person at extension "is un

available" message

exten => s-BUSY,1,VoiceMail(${ARG2},b) ; Person at extension "is bu

sy" message

exten => s-ANSWER,1,Hangup() ; To be safe, clean up the c

all after an answer by hanging up

exten => _s-.,1,Goto(s-NOANSWER,1) ; Handle any unhandled statu

s the same way we handle NOANSWER

[internal-extensions]

; If the building manager on duty does not answer the phone,

; the call is routed to mailbox 150:

exten => _15X,1,Macro(simple|SIP/${EXTEN}|150)

; IT has normal mailboxes:

exten => _16X,1,Macro(simple|SIP/${EXTEN}|${EXTEN})

; Each manager has his or her own mailbox:

exten => _20[1-2],1,Macro(simple|SIP/${EXTEN}|${EXTEN})

; The reception staff have a common mailbox:

exten => _2[3-6]X,1,Macro(simple|SIP/${EXTEN}|804)

; The domestic sales group has a common mailbox:

exten => _3[0-4]X,1,Macro(simple|SIP/${EXTEN}|802)

; The international sales group has a common mailbox:

exten => _3[5-9]X,1,Macro(simple|SIP/${EXTEN}|803)

; No voice mail on the other extensions.

exten => _[4-5]XX,1,Dial(SIP/${EXTEN},30)

[voicemail-easyaccess]

exten => 800,1,VoiceMailMain(${CALLERID(num)})

[voicemail-generalaccess]

exten => 801,1,VoiceMailMain()

[voicemail-buildingmgr]

exten => 800,1,VoiceMailMain(150)

[voicemail-sales-domestic]

exten => 800,1,VoiceMailMain(802,s)

[voicemail-sales-international]

exten => 800,1,VoiceMailMain(803,s)

Special considerations

The extensions.conf for Widgets, Inc. is already starting to look a bit more complicated. This is because we are using different mailbox features for different users and departments. There are normal individual mailboxes for some staff and group mailboxes for sales and reception; on top of that, sales staff must be able to access messages without having to enter a password. This must be as easy and transparent as possible for individual staff members, so we set the standard voice mailbox access number to 800 for everyone.

Dialplan applications

There are two voicemail applications we can use in the dialplan (extensions.conf):

VoiceMail()
This application sends a caller to the voicemail system, where she will be asked to leave a message.

VoiceMailMain()
This application lets recipients check their voice messages and record new voicemail prompts.

VoiceMail()

Action: The caller is prompted to leave a voice message.

The VoiceMail() command is always called from the dialplan (extensions.conf). For example:

exten => 2000,2,VoiceMail(2000,u)

Syntax

VoiceMail(mailbox[@context][,u|b|s])

mailbox
This is the mailbox number. This does not have to be the same as the extension the caller dialled; nevertheless, this is a sensible practice, particularly in larger installations.

@context
Mailboxes may be implemented in a specific context. If no context is provided, the [default] context is used.

	If the caller presses "0" while listening to the prompt, the application will jump to extension "o" (the small letter o) in the specified context.

	If the caller presses "*" while listening to the prompt, the application will jump to extension "a" (the small letter a) in the specified context.

[u|b|s]
u
causes the "unavailable" message to be played. The pathname for this message is /var/lib/asterisk/sounds/vm-isunavail.gsm[16]
b
causes the "busy" to be played. The pathname for this message is /var/lib/asterisk/sounds/vm-rec-busy.gsm.
s
suppresses playback of the "unavailable" or "busy" notifications, plays a beep, and begins recording.

If there is no mailbox configured in voicemail.conf for the given number but there is a n+101 priority, Asterisk jumps to this priority and continues executing there.

VoiceMailMain()

Action: Lets users listen to their voicemail messages and record prompts.

The VoiceMailMain() command is always called from the dialplan (extensions.conf). For example:

exten => 300,1,VoiceMailMain()

Syntax

VoiceMailMain([mailbox][@context][,s|p|g(#)])

mailbox
This is the mailbox number. If no mailbox number is provided, Asterisk prompts for it.

@context
specifies the voicemail context (in voicemail.conf) for the mailbox.

[s|p|g#]
s
Disables the password requirement.

p
The user is asked for a mailbox number. The number entered is attached as a suffix to the contents of [mailbox]; for example, if the user enters 123, [mailbox]123 is called. This lets you easily configure mailbox groups.

g(#)
Adjusts the gain (in decibels) when recording voicemail prompts.

IVR

A complete description of the voice menus for VoiceMailMain() is difficult because they depend on the installed prompts. The main functions are described below.

	1
	Play messages

	
	3
Advanced options

1
Reply

2
Call back

3
Envelope

4
Outgoing call

4
Play previous message

5
Repeat the current message

6
Play the next message

7
Delete the current message

8
Forward the message to another mailbox

9
Save the message in a folder

*
Help; during message playback, rewind

Exit; during message playback, skip forward

	2
	Change folders

	0
	Mailbox options

	
	1
Record your unavailable message

2
Record your busy message

3
Record your name

4
Record your temporary message

Recording options

1
Accept

2
Review

3
Re-record

	*
	Help

	#
	Exit

[16] If you are using a pre-packaged Asterisk, the path may be different; for example, /usr/share/asterisk/sounds/.
voicemail.conf

Voicemail is configured in voicemail.conf. The file has three sections:

· [general]

· [zonemessages]

· defined contexts

[general]

Global configurations for the voicemail system go here. The available options for this section are described in detail below.

attach = [yes|no]
Sets whether voice message files are attached to e-mail notifications. Default: yes. The format defined by the first entry in the format= line is used.

Example:

attach = no

callback = [context]
Specifies the context through which callbacks from the voicemail system are made. If unset, callbacks cannot be made from voicemail. Default: unset.

Example:

callback = internal-extensions

charset = [charset]
Specifies the character set used to encode the text of the e-mail.

Example:

charset = ISO-8859-1

delete = [yes|no]
Sets whether messages are deleted once the e-mail notification with attachment has been sent. This saves hard disk space on the server if users are only to receive messages via e-mail.

Example:

delete = yes

directoryintro = [filename]
Specifies the filename of a sound file (found in the default sound file directory /var/lib/asterisk/sounds/) to be used instead of the default sound file for the Dial-by-Name system (see the section called “Directory (Dial-by-Name)”).

Example:

directoryintro = intro-widgets-phonebook

emailsubject = [subject]
Specifies the subject line to be used in e-mail notifications. For information about variables, see emailbody.

Example:

emailsubject = New message from ${VM_CALLERID}

pbxskip = [yes|no]
Asterisk prefixes [PBX] to the subject line of every e-mail notification. This is intended to make filtering e-mail notifications into a specific folder more straightforward, but can be suppressed with yes if undesired.

Example:

pbxskip = yes

emailbody = [Text der Email]
Specifies the body text of the e-mail notifications. Limited to 512 characters.

You may use variables in the subject and body of e-mail notifications:

	${VM_NAME}
	Name of mailbox owner

	${VM_DUR}
	Message length

	${VM_MSGNUM}
	Message number

	${VM_MAILBOX}
	Mailbox number

	${VM_CALLERID}
	Name and number of caller

	${VM_CIDNUM}
	Number of caller

	${VM_CIDNAME}
	Name of caller

	${VM_DATE}
	Date and time of call

	${VM_MESSAGEFILE}
	Name of the sound file that contains the voice message

Example:

emailbody = Hi, ${VM_NAME}!\n\nYou have a new message from ${VM_CALLERID} in mailbox ${VM_MAILBOX}. [17]

serveremail = [fromaddress]
Specifies the e-mail address that appears in the "From:" field of e-mail notifications.

Example:

serveremail = voicemail@widgets-inc.biz

fromstring = [fromname]
Specifies the envelope sender (From-Header) in e-mail notifications.

Example:

fromstring = VM

mailcmd = [mailer]
Specifies the application (including absolute path) to be used for sending e-mail notifications.

Examples:

mailcmd = /usr/sbin/sendmail -t

mailcmd = /usr/exim/bin/exim -t

externnotify = [application]
Specifies the application (including absolute path) called by Asterisk when a new message arrives.

Example:

externnotify = /usr/bin/local/send-sms.sh

externpass = [application]
Specifies the application (including absolute path) called by Asterisk when a user changes his password.

Example:

externpass = /usr/bin/local/password-notify.sh

forcegreetings = [yes|no]
Sets whether the user will be forced to record a new greeting when logging in to the system for the first time. Default: no

Example:

forcegreetings = no

forcename = [yes|no]
Sets whether the user will be forced to record her name when logging in to the system for the first time. Default: no

Example:

forcename = yes

format = [gsm|wav|wav49]
Defines the codecs used to save voicemail messages. If more than one codec is specified, the message is stored once in each of the formats specified. This can lead to a shortage of available disk space but means further transcoding will not be needed if a user using a different codec is retrieving the messages.

If attach=yes, the first format specified is used for the attachment to the e-mail notification.

Examples:

format = gsm|wav

Every message is saved in GSM and WAV format.

format = wav

Every message is saved only in WAV format.

	[image: image27.png]

	

	
	If this setting is changed during operation, existing files in other formats must be deleted manually by the system administrator.

searchcontexts = [yes|no]
Asterisk only looks for mailboxes in the specified context. Setting searchcontexts=yes makes Asterisk search in all contexts. Default: no

Example:

searchcontexts = no

maxmsg = [number of messages]
Defines the maximum number of messages a single mailbox may hold. Once this limit is reached, no further messages can be recorded, and the caller hears the message /var/lib/asterisk/sounds/vm-mailboxfull.gsm. Default: 100

[18].

Example:

maxmsg = 50

maxmessage = [length in seconds]
Sets the maximum duration of a message. Default: no limit

Example:

maxmessage = 120

minmessage = [length in seconds]
Sets the minimum duration of a message. Default: 0
Example:

minmessage = 5

maxgreet = [length in seconds]
Sets the maximum duration of greeting messages. Default: no limit

Example:

maxgreet=240

maxsilence = [length in seconds]
Sets the number of seconds of silence that the system will allow before it assumes that the caller has finished.

Example:

maxsilence=10

silencethreshold = [Schwellenwert]
Specifies the maximum sound level that Asterisk considers silence when measuring maxsilence=. The lower the number, the more sensitive the detection. Default: 128

[19]

Example:

silencethreshold = 50

maxlogins = [number of login attempts]
Sets the maximum number of failed login attempts (e.g., the user enters an incorrect password) before Asterisk hangs up. Default: 3

Example:

maxlogins = 3

skipms = [milliseconds]
Sets the number of milliseconds the "skip forward" and "rewind" keys will jump forward or back during message playback. Default: 3000

Example:

skipms = 3000

usedirectory = [yes|no]
Gives callers access to the Dial-by-Name system. Default: no

Example:

usedirectory = yes

saycid = [yes|no]
Sets whether the telephone number of the caller is announced when the message is heard. Default: no

Example:

saycid = yes

cidinternalcontexts = [context,context,...]
Defines (through a comma-separated list) which contexts are treated as internal when the originating telephone number is announced as per saycid=. For contexts defined as internal only the caller's extension is announced. Default: none

pagerfromstring = [sendername]
Indicates the sender for pager notifications. See fromstring=.

Example:

pagerfromstring = Widgets, Inc.

pagersubject = [subject]
Specifies the subject for pager notifications. See emailsubject=.

Example:

pagersubject = New message

pagerbody = [body text]
Specifies the message body for pager notifications. See emailbody=.

Example:

pagerbody = New message in mailbox ${VM_MAILBOX} from ${VM_CALLERID}.

There are other parameters in addition to those documented above; nevertheless, these are those most frequently used. A complete listing of the available parameters, with brief descriptions, may be found in the default version of voicemail.conf.

[zonemessages]

In larger enterprises, voicemail users can be spread across time zones; the [zonemessages] section allows for time announcements that correspond to the user's time zone.

[20]

Syntax

zonename = timezone | format

zonename
This is an arbitrary identifier used to identify the time zone. Only small letters (a-z), numbers (0-9), dash (-) and underscore (_) characters are allowed.

timezone
Time zone information is stored in /usr/share/zoneinfo for most Linux distributions. Typically the time zone files are sorted by continent, then region or city, separated by a /.

Examples:

Canada/Mountain

Europe/Berlin

Australia/Sydney

format
Defines the format for time announcements. This is done with the following variables:

	A
	Weekday (Monday to Sunday)

	a
	as A

	B
	Month (January to December)

	b
	as B

	h
	as B

	d
	Day of the month (1st to 31st)

	e
	as d

	Y
	Year (e.g. 2007)

	I
	Hour in 12 hour clock

	l
	as I

	H
	Hour in 24 hour clock. Single digit hours are preceded by a 0 ("oh").

	k
	Hour in 24 hour clock. Single digit hours have no prefix.

	M
	Minute

	P
	AM or PM

	p
	as P

	Q
	"Today," "yesterday," or "weekday, month, day, year."

	q
	Nothing if today, "yesterday," or "weekday, month, day, year."

	R
	Hour:minute:second

Other allowed variables include ${ANY_VARIABLE} (the contents of the variable are entered) and 'soundfilename'. When specifying a sound file, be careful not to add a file extension (e.g. .wav, .gsm); the specified sound file in /var/lib/asterisk/sounds is then played. The single quotation marks are mandatory.

Example:

[zonemessages]

germany = Europe/Berlin | 'vm-received' Q 'digits/at' kM

alberta = Canada/Mountain | 'vm-received' Q 'digits/at' HM

england = Europe/London | 'vm-received' Q 'digits/at' R

military = Zulu | 'vm-received' q 'digits/at' H N 'hours' 'phonetic/z_p'

Defined contexts

As in the dialplan (extensions.conf) we can define contexts in voicemail.conf. This is useful when there is a need to separate voicemail access by department, branch, or city, and makes it possible to define separate Dial-by-Name directories as well (see the section called “Directory (Dial-by-Name)”).

The default context

A default context is mandatory. For most installations, this is all that is required.

Mailboxesd

You can configure as many mailboxes as you like in a given context.

Syntax

mailbox => password,name[,e-mail[,pager-e-mail[,options]]]

Example:

202 => 1234,Gina Smart,gina@widgets-inc.biz,,attachfmt=wav|delete=yes

mailbox
Mailbox number (digits)

password
Password for the mailbox (this may be letters or numbers). Generally, numbers are more practical as they are more likely to be enterable from a standard telephone set.

e-mail
E-mail address to which to send e-mail notifications.

pager-e-mail
E-mail address for the pager to which pager notifications should be sent.[21]
options
Multiple options must be separated by the pipe character (|); these options can override global options set in [general]. Note that there cannot be any spaces between the parameter name, the = sign, and the value, nor between the options and the pipe character.

The most important options applied here are:

tz=[timezone]
Sets the time zone previously defined in [zonemessages] (see the section called “[zonemessages]”).

Example:

tz=alberta

attach=[yes|no]
If defined, sets whether voice message files are attached to e-mail notifications.

attachfmt=[gsm|wav|wav49]
If defined, overrides the format= value set in [general] for message attachments to e-mail notifications.

saycid=[yes|no]
Sets whether the telephone number of the caller is announced when the message is heard.

sayduration=[yes|no]
Sets whether the length of the message will be announced. Default: yes

saydurationm=[length in minutes]
Defines the minimum duration for a message to be before the duration is announced. Default: 0
dialout=[context]
Specifies the context to be used for dialling out from a message. Calls cannot be made out of voice mail unless this parameter is set.

Example:

dialout=internal-extensions

sendvoicemail=[yes|no]
Sets whether a user may send messages to other voicemail users.

callback=[context]
Specifies the context to be used for dialling out from a message. If defined, this makes it possible to return a call to someone who has left a message.

review=[yes|no]
Sets whether callers leaving a message may listen to the message before sending it. Default: no

operator=[yes|no]
Sets whether callers can connect to the operator before, during or after recording a message by pressing "0" (zero). In Asterisk, the operator is always the "o" (small letter o) extension in the current context. Default: no
envelope=[yes|no]
Sets whether message envelope information is announced before the message is heard. Setting this parameter to no overrides other parameters (for example, tz). Default: yes
delete=[yes|no]
Sets whether messages are deleted after they have been attached to an e-mail notification. Default: no

nextaftercmd=[yes|no]
Sets whether the system jumps to the next message after the current message has been saved or deleted. Default: no
forcename=[yes|no]
If set to yes, forces a system user to record her name when accessing the system for the first time. Default: no
forcegreetings=[yes|no]
If set to yes, forces a system user to record a personal greeting when accessing the system for the first time. Default: no
hidefromdir=[yes|no]
Sets whether the mailbox for this user will be hidden from the Dial-by-Name directory. Default: no

[17] This must all be on one line. The \n character puts a carriage return in the text.

[18] The path depends on the installation; some packages install the sounds in /usr/share/asterisk/sounds/
[19] There is no indication in the Asterisk source code what the range or unit for this value is. The only way to set the value sensibly is through trial and error.

[20] Note that time zones defined here must still be activated for individual users. See the section called “Mailboxesd”
[21] Note that such notifications are still, in essence, e-mail notifications. If you want to send SMS notifications, this can be done with a number of external applications which may be invoked through Asterisk.

Directory (Dial-by-Name)

Though not part of the voice mail system per se, we discuss the Dial-by-Name directory here because it was developed along with Comedian Mail and gets its configuration from voicemail.conf.

Returning to our example for the Robinson family, the section called “The Robinson Family”, we make the following small changes:

[general]

format = gsm

[default]

; Syntax for new entries looks like this:

; MailboxNumber => password,firstname lastname,e-mail,pager,options

; ^^^^^^^^^^^^^^^^^^

200 => 1234,Dave Robinson

201 => 1234,Colleen Robinson

202 => 1234,Matthew Robinson,matt@robinsonfamily.name

203 => 1234,Lisa Robinson,lisa@robinsonfamily.name,,delete=yes

From here it is a simple matter to generate a Dial-by-Name directory. We use the Asterisk application Directory() in extensions.conf:

exten => 800,1,Directory(default,from-internal)

Syntax

Directory(vm-context[,dial-context[,options]])

vm-context
The directory is always generated from a specific context (that is, only the entries in this defined context are entered in the directory). In most cases, the default context is sufficient. In a larger enterprise, you may want to separate directories by department; in this case, you will need additional contexts.

dial-context
The directory is used to call to a specific person; dial-context defines which context is used for the call. If undefined, vm-context is used instead.

If the caller presses "0" (zero), the call will be sent to the "o" (small letter o) extension in this context. If he presses "*" (asterisk, or star), the call will be sent to the "a" (small letter a) context.

options
Option f sets searching by first name rather than last name.

See also ???
Operation

The caller is asked to enter the first three letters of the person's last name (if option f is specified, the first name is used) using the telephone keypad. The application searches for the entry in the directory and connects the caller after checking that the entry is the correct one.

Saving passwords in voicemail.conf

The voicemail.conf file need not serve only as a directory source; it can also be used as a general storage file for passwords. You may encounter situations where users must authenticate for reasons other than retrieving voicemail - for example, call agents logging in at a call center.

As a result, it is sometimes necessary to create voicemail.conf entries for users, even if they have no need for a mailbox. Don't worry about callers accidentally leaving messages in an unattended mailbox; only mailboxes explicitly referenced through an extension using VoiceMail() or VoiceMailMain() in extensions.conf will be accessible to callers.

For example, you might make two entries in the context [call-center-agents] in voicemail.conf:

1001 => 1234,Annaliese Chips,,,hidefromdir=yes

1002 => 1234,Donald Down,,,hidefromdir=yes

You can use these entries to authenticate a user with the dialplan application VMAuthenticate() (see ???):

exten => 988,n,Read(agentno,agent-user,10,,3)

exten => 988,n,VMAuthenticate(${agentno}@call-center-agents)

Dont let this example limit your creativity, however. There are many ways to authenticate users, of which this is only one. Saving passwords in AstDB or another database (such as MySQL, for example) is usually preferable.

Chapter 5. Interactive Voice Response (IVR)

An interactive voice response system lets computer systems interact with telephone callers, who provide input to the system either by pressing the keypad on their telephone set (DTMF, "dual-tone multi-frequency" keying, aka Touch-Tone®) or by saying something (natural language speech recognition). Most IVR systems provide selection menus for routing calls without requiring operator intervention, but modern IVR systems can also be very complex applications that handle information or control equipment.

The basic principle common to all IVR systems, however, is that the caller is read a menu and chooses options from that menu to perform actions, or, alternatively, enters information (in numerical format, through pressing the keypad). IVRs can be used to obtain stock quotations, train schedules, and weather reports; they can also be used for automated purchasing systems, such as for concert tickets. The potential applications are limited only by your imagination.

Systems vary in their complexity. The most advanced generate spoken text "on-the-fly" using text-to-speech (TTS) systems and accept spoken user input with speech recognition. When properly implemented they can provide a high level of user-friendliness, but implementation is so complex that they are rarely used, except in larger organizations.[22]
The simplest form of IVR is also the most common. Pre-recorded messages are played to the caller; the caller responds with DTMF keypad input, which Asterisk can recognize easily in the default install.

Public opinion on IVRs is divided. Some people find them a helpful form of automation, while others find them exceedingly frustrating. This is usually the result of poor menu design or speech recognition with a high failure rate. A well-functioning IVR can be pleasant for the customer, but a poorly implemented one can scare her away.[23]Take care when planning an IVR system. Pay special attention to menu design and allow adequate time for a clean development and deployment. Aggressive testing and post-deployment monitoring of premature hang-ups should be part of your routine. Remember that IVR systems are not an end in themselves, nor are they a panacea. Think of your customer!

[22] LumenVox makes a speech recognition kit for Asterisk. See http://www.lumenvox.com
[23] The increasingly multi-ethnic nature of society everywhere means that speech recognition should be implemented with caution, as accents can be problematic.

A simple IVR

The standard Asterisk sound set includes a file called marryme.gsm, containing the announcement "Will you marry me? Press 1 for yes or 2 for no."[24]To build a "marriage proposal" application, the following dialplan will suffice:[25]
exten => 30,1,Answer()

exten => 30,2,Background(marryme)

exten => 30,3,Hangup()

exten => 1,1,Playback(thank-you-cooperation)

exten => 1,2,Hangup()

exten => 2,1,Playback(sorry)

exten => 2,2,Hangup()

If the caller dials extension 30, Asterisk answers and plays the file marryme.gsm. Through use of the Background() application, the user is allowed to enter input at any time during playback. The input is interpreted as an extension and the call is passed to that extension. If the caller presses 1, he hears "Thank you for your cooperation," after which Asterisk hangs up.

Differences between Playback() and Background()

Playback() (see the section called “Playback()”) only plays back sound files; input is ignored. Background() (see the section called “Background()”) plays sound files back while listening for caller input, which is interpreted as an extension as though it had been dialed as one.

Difference between 10 and 1000

To address the challenge of extensions beginning with the same digits, let's examine the following example:

exten => 30,1,Answer()

exten => 30,2,Background(marryme)

exten => 30,3,Hangup()

exten => 1,1,Playback(thank-you-cooperation)

exten => 1,2,Hangup()

exten => 10,1,NoOp(Test mit 10)

exten => 10,2,Hangup()

exten => 100,1,NoOp(Test mit 100)

exten => 100,2,Hangup()

exten => 2,1,Playback(sorry)

exten => 2,2,Hangup()

Background() waits a set time after each digit in order to distinguish between 1, 10 and 100. Once this time (TIMEOUT) has expired, input is deemed to be complete.

	[image: image28.png]

	

	
	TIMEOUT lets you set other timeouts. For more information, enter show function TIMEOUT in the Asterisk CLI, or see the section called “TIMEOUT()”

TIMEOUT is defined in seconds and may be set in the dialplan like so.

exten => 123,1,Set(TIMEOUT(digit)=3)

Intelligent discernment

In the dialplan above, Asterisk will proceed immediately if 2 is pressed, but only after the timeout has expired if 1 is pressed. Asterisk intelligently determines whether a digit entered can match multiple extensions and behaves accordingly.

Invalid input (the i extension)

An invalid entry (any entry for which no extension in the dialplan matches) can be handled by the i extension. A simple example would look like this:

exten => 30,1,Answer()

exten => 30,2,Background(marryme)

exten => 30,3,Hangup()

exten => 1,1,Playback(thank-you-cooperation)

exten => 1,2,Hangup()

exten => 2,1,Playback(sorry)

exten => 2,2,Hangup()

; Any other input is caught by the i extension.

exten => i,1,Background(sorry)

exten => i,2,Hangup()

Pauses

The easiest way to create pauses for input is to play back empty sound files. A series of silent sound files of between 1 and 9 seconds in length may be found in /var/lib/asterisk/sounds/silence/. If we need to allow five seconds following the prompt (a marriage proposal requires careful consideration, after all), here's how we can accomplish that:

exten => 30,1,Answer()

exten => 30,2,Background(marryme)

exten => 30,3,Background(silence/5)

exten => 30,4,Hangup()

exten => 1,1,Playback(thank-you-cooperation)

exten => 1,2,Hangup()

exten => 2,1,Playback(sorry)

exten => 2,2,Hangup()

exten => i,1,Background(marryme)

exten => i,2,Hangup()

[24] Allison Smith is a Canadian voice professional who is the "Voice of Asterisk". Its growing popularity has given her a considerable cult following :)

[25] Using this IVR for an actual marriage proposal is strongly discouraged.

Multilevel IVR systems

The problem with multilevel IVRs is that the caller has to enter single digits multiple times (oftentimes the same digit), but gets a different response depending on the menu level. Because a number can only be used once in a given context, the caller would be stuck on the first menu level. If we need multiple menus which provide different responses for the same digits, we must place the submenus in different contexts ([cafeteria] in our example). We jump between these contexts using the application Goto() (see the section called “Goto()”). Let's assume you have the following sound files stored in /var/lib/asterisk/sounds/:

· mainmenu.gsm

"Press 1 for sales, 2 for service, or 3 for the cafeteria."

· cafeteria.gsm

"Press 1 to hear the menu for this week or 2 to hear the menu for next week."

· cafeteria-menu-this-week.gsm

"Monday: Noodles with pesto sauce. Tuesday: Pork chops..."

· cafeteria-menu-next-week.gsm

"Monday: Stew, featuring noodles, basil and, um, pork chops..."

If sales is at extension 100 and the service department is at 150, the dialplan for this IVR would look like this:

[example-ivr]

; The menu is repeated until the caller provides input.

;

exten => 30,1,Answer()

exten => 30,2,Background(mainmenu)

exten => 30,3,Background(silence/3)

exten => 30,4,Goto(2)

exten => 1,1,Dial(SIP/100)

exten => 2,1,Dial(SIP/150)

; Goto() jumps to another context ([cafeteria])

;

exten => 3,1,Goto(cafeteria,100,1)

exten => i,1,Goto(30,2)

[cafeteria]

exten => 100,1,Background(cafeteria)

exten => 100,2,Background(silence/3)

exten => 100,3,Goto(1)

exten => 1,1,Playback(cafeteria-menu-this-week)

exten => 1,2,Wait(2)

exten => 1,3,Goto(1)

exten => 2,1,Playback(cafeteria-menu-next-week)

exten => 2,2,Wait(2)

exten => 2,3,Goto(1)

; Invalid input sends the caller back to the main menu

exten => i,1,Goto(example-ivr,30,2)

IVR depth

Even though it is technically possible to support an unlimited number of IVR levels, in practice it is advisable to keep the number of menu levels to a maximum of three. Many callers hang up after the third menu level.

Text-to-Speech (TTS)

Text-to-speech is simply the conversion of written text into a spoken word, using speech synthesis. In our Asterisk system this means that an external program generates a sound file using a given text file (usually in ASCII format) as the source. The resulting sound file is played back as any other sound file would be, and the caller hears the text spoken out.

Quality of text-to-speech engines vary widely. As a rule-of-thumb, the open source engines are not as sophisticated as the commercial ones.

	[image: image29.png]

	

	
	Sometimes you can test high quality engines through web portals. IBM offers a test portal for its TTS engine at http://www.ibm.com/software/pervasive/tech/demos/tts.shtml.

The TTS engine Festival (http://www.cstr.ed.ac.uk/projects/festival/) is a widely used open source version, but the voices included with it often lack the quality necessary for professional implementation, particularly if you need voices in languages other than English. Many Asterisk developers use the engine and voices sold commercially by Cepstral (http://www.cepstral.com/). As of this writing, the pricing was reasonable.[26]The solution described here builds on the Cepstral engine.[27]
Installating Cepstral Text-to-Speech

Download the voice from http://www.cepstral.com/downloads/. The file (Cepstral_David_i386-linux_4.2.0.tar.gz in this example) is installed with the following commands:

tar xvzf Cepstral_David_i386-linux_4.2.0.tar.gz

cd Cepstral_David_i386-linux_4.2.0.tar.gz

./install

Examples and tests

The engine installs to /opt/swift/bin/swift unless otherwise specified. You can test the installation from the command line as follows:

/opt/swift/bin/swift -o /tmp/test.wav -p audio/sampling-rate=8000,audio/

channels=1 "This is a test."

You can play the resulting file with any audio player, or through Asterisk. To do this, just add a few lines to extensions.conf:

exten => 1234,1,Answer()

exten => 1234,2,Playback(/tmp/test)

exten => 1234,3,Hangup()

To generate some speech output from within Asterisk, we use the System() application in the dialplan. Here is an example:

exten => 1222,1,Answer()

exten => 1222,2,System(rm -rf /tmp/test.wav)

exten => 1222,3,System(/opt/swift/bin/swift -o /tmp/test.wav -p audio/sa

mpling-rate=8000,audio/channels=1 "Another test.")

exten => 1222,4,Playback(/tmp/test)

exten => 1222,5,Hangup()

Pauses in text

Cepstral uses SSML (Speech Synthesis Markup Language) in its engine. You can add speech pauses to the output by specifying them as in this example:

exten => 1222,1,Answer()

exten => 1222,2,System(rm -rf /tmp/test.wav)

exten => 1222,3,System(/opt/swift/bin/swift -o /tmp/test.wav -p audio/sa

mpling-rate=8000,audio/channels=1 "Another test. <break time='2500ms'/>

Done!")

exten => 1222,4,Playback(/tmp/test.wav)

exten => 1222,5,Hangup()

Learn more about the SSML standard at http://www.w3.org/TR/speech-synthesis/.

[26] Like IBM, Cepstral has a demo portal at http://www.cepstral.com/demos/.

[27] For those who have worked with Festival before, these instructions are easily modified to work with it. This applies to other TTS engines as well. The implementation model is the same.

Chapter 6. External control of Asterisk

One of Asterisk's biggest advantages is the ability it gives the administrator to control it from the shell or through external applications.

asterisk -rx "command"

The simplest way to control Asterisk from an external shell or application is to issue the command asterisk with the option -rx followed by the CLI command. Any CLI command may be entered from the system shell in this fashion.

Example

Say you wanted to see the dialplan for extension 23 in the context [my-phones]; you would do this with asterisk -rx "dialplan show 23@my-phones" entered in the shell:

root@molokai:~>asterisk -rx "dialplan show 23@my-phones"

[Context 'my-phones' created by 'pbx_config']

 '23' => 1. Wait(1) [pbx_c

onfig]

 2. Answer() [pbx_c

onfig]

 3. Playback(hello-world) [pbx_c

onfig]

 4. Wait(1) [pbx_c

onfig]

 5. Hangup() [pbx_c

onfig]

-= 1 extension (5 priorities) in 1 context. =-

root@molokai:~>

Call Files

Call files are like a shell script for Asterisk. A user or application writes a call file into /var/spool/asterisk/outgoing/ where Asterisk processes it immediately.

	[image: image30.png]

	

	
	A mv (move) is an atomic operation (an operation which does not take effect until it is 100% complete) and as such is ideally suited for .call files. With cp (copy), the file is copied line by line, which could lead to Asterisk processing an incomplete file.

Let's demonstrate the .call file principle with an example. Assume that we have a SIP phone registered with the number 2000 in Asterisk. In addition, we have the following extension in the dialplan:

[call-file-test]

exten => 10,1,Answer()

exten => 10,n,Wait(1)

exten => 10,n,Playback(hello-world)

exten => 10,n,Wait(1)

exten => 10,n,Hangup()

We create a call file called a-test.call in /tmp/ with the following content:

Channel: SIP/2000

MaxRetries: 2

RetryTime: 60

WaitTime: 30

Context: call-file-test

Extension: 10

Now we move this file with mv /tmp/a-test.call /var/spool/asterisk/outgoing/
root@molokai:~>mv /tmp/a-test.call /var/spool/asterisk/outgoing/

The following happens:

· Asterisk polls the /var/spool/asterisk/outgoing/ for new call files and processes any it finds.

· Asterisk opens a connection to device SIP/2000. If the device is in use or not answered, Asterisk tries two more times (see MaxRetries).

· If someone answers SIP/2000, Asterisk begins processing extension 10 in the context [call-file-test]. In this case, Asterisk plays hello-world to the answering party.

Parameters

These parameters may be used in call files:

Channel: <channel>
The channel upon which to initiate the call. Uses the same syntax as the Dial() command (see the section called “Dial()”).

Callerid: <callerid>
The caller ID to be used for the call.

WaitTime: <number>
Number of seconds the system waits for the call to be answered. If not specified, defaults to 45 seconds.

MaxRetries: <number>
Maximum number of dial retries (if an attempt fails because the device is busy or not reachable). If not specified, defaults to 0 (only one attempt is made).

RetryTime: <number>
Number of seconds to wait until the next dial attempt. If not specified, defaults to 300 seconds.

Account: <account>
The account code for the CDR.

Context: <context>
The destination context.

Extension: <exten>
The destination extension, in which dialplan execution begins if the device is answered.

Priority: <priority>
The destination priority. If not specified, defaults to 1.

Setvar: <var=value>
Setvar: lets you set one or more channel variables.

Archive: <yes|no>
By default, call files are deleted immediately upon execution. If Archive: yes is set, they are copied into /var/spool/asterisk/outgoing_done/ instead. Asterisk adds a line to the call file which describes the result:

Status: <Expired|Completed|Failed>

Executing call files in the future

When executing a call file, Asterisk compares the change time with the current time. If the change time is in the future, Asterisk ignores the call file. This is an easy way to implement time-based call files.

Hotel wake-up call example

A hotel wants to implement a simple wake-up call system. Clients must be able to set a wake-up call by dialing *77*, whereupon they hear a prompt asking for the date and time of the wake-up call.

[hotel-intern]

exten => _*77*XXXXXXXXXXXX,1,Answer()

exten => _*77*XXXXXXXXXXXX,n,Set(year=${EXTEN:4:4})

exten => _*77*XXXXXXXXXXXX,n,Set(month=${EXTEN:8:2})

exten => _*77*XXXXXXXXXXXX,n,Set(day=${EXTEN:10:2})

exten => _*77*XXXXXXXXXXXX,n,Set(hours=${EXTEN:12:2})

exten => _*77*XXXXXXXXXXXX,n,Set(minutes=${EXTEN:14:2})

exten => _*77*XXXXXXXXXXXX,n,NoOp(Wake-up call scheduled for ${CALLERID(

num)} at ${hours}:${minutes} on ${day}.${month}.${year}.)

exten => _*77*XXXXXXXXXXXX,n,System(echo -e "Channel: SIP/${CALLERID(num

)}\\nContext: wake-up\\nExtension: 23" > /tmp/${UNIQUEID}.call)

exten => _*77*XXXXXXXXXXXX,n,System(touch -t ${year}${month}${day}${hour

s}${minutes} /tmp/${UNIQUEID}.call)

exten => _*77*XXXXXXXXXXXX,n,System(mv /tmp/${UNIQUEID}.call /var/spool/

asterisk/outgoing/)

exten => _*77*XXXXXXXXXXXX,n,Playback(rqsted-wakeup-for)

exten => _*77*XXXXXXXXXXXX,n,SayNumber(${hours})

exten => _*77*XXXXXXXXXXXX,n,SayNumber(${minutes})

exten => _*77*XXXXXXXXXXXX,n,Hangup()

[wake-up]

exten => 23,1,Answer()

exten => 23,n,Wait(1)

exten => 23,n,Playback(this-is-yr-wakeup-call)

exten => 23,n,Wait(1)

exten => 23,n,Hangup()
The Asterisk Manager Interface (AMI)

Activate the Asterisk Manager Interface by setting enabled=yes in the [general] section in manager.conf.

	[image: image31.png]

	

	
	Never do this on a publicly accessible server unless you have taken steps to protect it with packet filters such as iptables, ipfw, an external firewall, or an SSH tunnel!

We add a user entry called admin at the end of the file:

[admin]

secret = secret5

deny = 0.0.0.0/0.0.0.0

permit = 127.0.0.1/255.255.255.255

read = all,system,call,log,verbose,command,agent,user,config

write = all,system,call,log,verbose,command,agent,user,config

The options following read and write define the allowed command types for this user.[28]
	[image: image32.png]

	

	
	This generous rights assignment is only for test purposes! The command rights level means the user can stop Asterisk. As of Asterisk 1.4, it is even possible to make dialplan changes through the AMI - which also means it is possible to run shell commands with root privileges using System()!

After restarting Asterisk we can connect to the AMI on port 5038 from the system shell using telnet[29]:

$ telnet 127.0.0.1 5038

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Asterisk Call Manager/1.0

Now you can enter commands, usually consisting of multiple lines, by hand. For example:

Action: Login

ActionID: 1

Username: admin

Secret: secret5

	[image: image33.png]

	

	
	All command packets are closed with two carriage returns.

Response:

Response: Success

ActionID: 1

Message: Authentication accepted

Of course, we are most interested in automating this interaction with scripts.

	[image: image34.png]

	

	
	The Manager API is not exactly famous for its ability to handle multiple simultaneous connections gracefully (even though this has improved immensely in version 1.4). If you anticipate this kind of load, it is worth considering an AMI proxy such as the "Simple Asterisk Manager Proxy"[30] (a Perl script), which can handle many connections and bundles them in a single connection. This is completely transparent to the script accessing the AMI. Of course, for the purposes of playing around, it isn't strictly necessary.

Following a successful authentication, packets can be sent in both directions. The packet type is always determined by the first line. The client sends Action packets, the server answers with Response or can send Event packets. Otherwise the order of the lines in a packet is irrelevant. Lines are terminated with a CR LF[31]combination. The entire packet is terminated with an additional CR LF combination. An AMI client normally sends a randomized but unique ActionID with every Action,[32] which the server uses in its response for the purpose of managing overlapping packet streams.

The server sends the client Event packets, which can refer to any events; ther are also events that occur as the result of a client-initiated Action. In this case, the server sends Response: Follows followed by the events (which will contain the ActionID of the initiating action) and a closing event (usually actionnameComplete).

If your client has no need for events, it can turn off these notifications by including Events: off in the authentication packet. Once set, the AMI sends only responses to actions initiated by the client.

The list of available commands can be called up in the CLI with manager show commands (or show manager commands), while information about a specific command can be obtained with manager show command command (or show manager command command):

mos-eisley*CLI> show manager commands

 Action Privilege Synopsis

 ------ --------- --------

 AbsoluteTimeout call,all Set Absolute Timeout

 AgentCallbackLo agent,all Sets an agent as logged in by callba

ck

 AgentLogoff agent,all Sets an agent as no longer logged in

 Agents agent,all Lists agents and their status

 ChangeMonitor call,all Change monitoring filename of a chan

nel

 Command command,all Execute Asterisk CLI Command

 DBGet system,all Get DB Entry

 DBPut system,all Put DB Entry

 Events <none> Control Event Flow

 ExtensionState call,all Check Extension Status

 GetConfig config,all Retrieve configuration

 Getvar call,all Gets a Channel Variable

 Hangup call,all Hangup Channel

 IAXnetstats <none> Show IAX Netstats

 IAXpeers <none> List IAX Peers

 ListCommands <none> List available manager commands

 Logoff <none> Logoff Manager

 MailboxCount call,all Check Mailbox Message Count

 MailboxStatus call,all Check Mailbox

 Monitor call,all Monitor a channel

 Originate call,all Originate Call

 Park call,all Park a channel

 ParkedCalls <none> List parked calls

 PauseMonitor call,all Pause monitoring of a channel

 Ping <none> Keepalive command

 PlayDTMF call,all Play DTMF signal on a specific chann

el.

 QueueAdd agent,all Add interface to queue.

 QueuePause agent,all Makes a queue member temporarily una

vailable

 QueueRemove agent,all Remove interface from queue.

 Queues <none> Queues

 QueueStatus <none> Queue Status

 Redirect call,all Redirect (transfer) a call

 SetCDRUserField call,all Set the CDR UserField

 Setvar call,all Set Channel Variable

 SIPpeers system,all List SIP peers (text format)

 SIPshowpeer system,all Show SIP peer (text format)

 Status call,all Lists channel status

 StopMonitor call,all Stop monitoring a channel

 UnpauseMonitor call,all Unpause monitoring of a channel

 UpdateConfig config,all Update basic configuration

 UserEvent user,all Send an arbitrary event

 WaitEvent <none> Wait for an event to occur

These commands are almost always a direct translation of dialplan applications, except in the case of Originate, used to initiate an outgoing call, and Command, which executes a command directly on the CLI. Because our test user admin has all the rights levels (see above), he can execute all commands. The following example shows how we learn how a command is used:

mos-eisley*CLI> manager show command Command

Action: Command

Synopsis: Execute Asterisk CLI Command

Privilege: command,a

Description: Run a CLI command.

Variables: (Names marked with * are required)

 *Command: Asterisk CLI command to run

 ActionID: Optional Action id for message matching.

The events that Asterisk sends are, as of this writing, effectively undocumented. You may find a list with sparse details at http://www.voip-info.org/wiki/view/asterisk+manager+events. A few additional explanations may be found at http://asterisk-java.sourceforge.net/apidocs/net/sf/asterisk/manager/event/package-frame.html.[33]
Example: Getting the number of voicemail messages with expect

Say we wanted to get the number of messages in a given voice mailbox via the Manager interface. This is easily done using an expect script.

expect is an extended Tcl interpreter used for automating interfaces with interactive shell programs.[34]
The following expect script connects to the AMI, logs in, then returns the number of new and old messages in the specified mailbox:

#!/usr/bin/expect

#

Usage: ./vmcount.exp 1234@default

The user account from manager.conf:

set username "admin"

set secret "secret5"

set host "127.0.0.1"

set port "5038"

if {[llength $argv] != 1} {

 send_user "Error: You must specify a mailbox!\n"

 exit 1

}

First argument is the mailbox:

set mailbox [lindex $argv 0]

send_user "Mailbox: $mailbox\n"

Mute output to stdout:

log_user 0

Open connection to AMI:

spawn telnet $host $port

Just in case telnet aborts because it cannot connect:

expect_before eof {

 send_user "Failed to connect.\n"

 exit 1

}

Wait for the text "Manager"; once received, send a login packet:

#

expect "Manager" {

 send_user "Connected.\n"

 send "Action: Login\nUsername: $username\nSecret: $secret\n\n"

 # Please note that telnet automatically converts line feeds

 # (\n) to CR LF (\r\n) - so you must not write \r\n here.

}

Login successful?:

#

expect {

 -re "Response:\\s*Error" {

 send_user "Login failed.\n"

 exit 1

 }

 -re "Response:\\s*Success" {

 send_user "Logged in.\n"

 # Query the number of messages in the mailbox:

 send "Action: MailboxCount\nMailbox: $mailbox\n\n"

 }

}

expect {

 -re "Response:\\s*Error" {

 send_user "Query of mailbox failed.\n"

 exit 1

 }

 -re "Response:\\s*Success" {}

}

expect {

 -re "NewMessages:\\s*(\[\\d]*)" {

 send_user "New messages: $expect_out(1,string)\n"

 }

}

expect {

 -re "OldMessages:\\s*(\[\\d]*)" {

 send_user "Old messages: $expect_out(1,string)\n"

 }

}

Log out -- not strictly necessary, but cleaner:

send "Action: Logoff\n\n"

We save the script as vmcount.exp and set it executable with chmod a+x vmcount.exp.

Sample output:

$./vmcount.exp 123@default

Mailbox: 123@default

Connected.

Logged in.

New messages: 0

Old messages: 0

StarAstAPI for PHP

A disclaimer: keep your expectations modest. StarAstAPI has room for improvement :-)

There are now numerous, more-or-less good APIs for the AMI in a variety of programming languages (PHP, Perl, Python, Ruby etc.) which we, because of space and time limitations, can't explore here[35]. If the API for your favorite language doesn't work, we're confident you can figure it out. It's doubtful that anybody without programming experience has read this far :)

In this short example, we test the StarAstAPI[36] in PHP, which assumes a PHP 5[37] that was compiled with --enable-sockets.[38] Unfortunately, the StarAstAPI files still contain the obsolete "short open tags" (<?). If you encounter them, replace them with the correct syntax (<?php). Four demo scripts are included with the API: sLogin.php attempts a login[39], sCommand.php executes reload on the CLI, sDial.php tries a connection to SIP/120 and sEvents.php receives events. If we connect to Asterisk using asterisk -vvvr and simultaneously run php -q sLogin.php to open a connection to the AMI[40], watching the CLI, we see:

mos-eisley*CLI>

 == Parsing '/etc/asterisk/manager.conf': Found

[Jan 26 20:08:09] NOTICE[10352]: manager.c:961 authenticate: 127.0.0.1 t

ried to authenticate with nonexistent user 'mark'

 == Connect attempt from '127.0.0.1' unable to authenticate

mos-eisley*CLI>

This failed because the user did not exist, yet the demo script still reports success:

$ php -q sLogin.php

Login Sucessful

followed by the response packet:

Response: Error

ActionID: 1

Message: Authentication failed

The StarAstAPI is, as you can see, not completely clean, but is simple enough that it can be improved easily. If we call php -q sEvents.php - this time with the correct user - we see:

mos-eisley*CLI>

 == Parsing '/etc/asterisk/manager.conf': Found

 == Manager 'admin' logged on from 127.0.0.1

mos-eisley*CLI>

As a test, we execute a reload in the CLI, which is reflected in the PHP script output:

Event: Reload

Privilege: system,all

Message: Reload Requested

Event: ChannelReload

Privilege: system,all

Channel: SIP

ReloadReason: RELOAD (Channel module reload)

Registry_Count: 0

Peer_Count: 0

User_Count: 0

Give your creativity free-reign! Write a small script that calls all your friends - in the middle of the night, of course!

Example: Getting the number of mailbox messages with PHP

Here's how we would accomplish the same objective as the section called “Example: Getting the number of voicemail messages with expect” in PHP using StarAstAPI:

#!/usr/bin/php -q

<?php

option -q turns off the header output when executing CGI-PHP

if ($argc != 2) {

 echo "Error: You must specify a mailbox!\n";

 exit(1);

}

The first argument after the program name is the mailbox:

$mailbox = $argv[1];

echo "Mailbox: $mailbox\n\n";

Include StarAstAPI:

require_once './StarAstAPI/StarAstAPI.php';

Connect and log in:

#

$ami = new AstClientConnection();

if ($ami->Login('admin', 'secret5', '127.0.0.1', 5038)) {

 $rp = $ami->GetResponse('1');

 //echo $rp->ToString();

} else {

 exit(1);

}

Send the following packet:

Action: MailboxCount

Mailbox: $mailbox

ActionID: 2

#

$data = new AstPacketData;

$data->AddKVPair('Action' , 'MailboxCount');

$data->AddKVPair('Mailbox' , $mailbox);

$data->AddKVPair('ActionID', '2');

$packet = new AstPacket;

$packet->SetAstPacketType('Action');

$packet->SetAstPacketData($data);

$ami->SendPacket($packet);

Read the response packet bearing ActionID 2:

#

$rPacket = $ami->GetResponse('2');

//echo $rp->ToString();

$rData = $rPacket->GetAstPacketData();

$r = $rData->GetAll();

echo "New messages: ", (int)trim($r['NewMessages:']), "\n";

echo "Old messages: ", (int)trim($r['OldMessages:']), "\n";

echo "\n";

Log out -- not strictly necessary, but cleaner:

#

$ami->Logoff();

Unfortunately, StarAstAPI isn't totally discreet.

It does this:

#echo "Logoff Called from somewhere ...";

#socket_close($this->mSocket);

echo "\n";

?>

We save this script as vmcount.php and make it executable with chmod a+x vmcount.exp.

Sample output:

$./vmcount.php 123@default

Mailbox: 123123123

New messages: 0

Old messages: 0

Logoff Called from somewhere ...

[28] Learn the rights levels needed for commands by entering manager show commands (or show manager commands in Asterisk 1.2) in the CLI.

[29] Here we only use telnet as an interface, and not in the traditional, interactive fashion.

[30] http://www.popvox.com/simpleproxy.pl

[31] Carriage Return (decimal ASCII 13) and Line Feed (decimal ASCII 10)

[32] This can be, for example, the name of the script, a timestamp and a sequence number, e.g. testscript.php-1169405408-1.
[33] Don't be confused: this is primarily Asterisk-Java documentation.

[34] http://expect.nist.gov/, http://en.wikipedia.org/wiki/Expect
[35] Examples with comments may be found at http://www.voip-info.org/wiki/view/Asterisk+manager+Examples
[36] from http://www.starutilities.com/
[37] The API is easily ported to PHP 4, though the code is cluttered and poorly formatted. When in doubt, just remedy the parse errors :)

[38] You can check this from the shell with php -m.

[39] If you have followed the examples above, you will need to adapt the user name and password.

[40] The user and password are deliberately incorrect.

The Aynchronous Javascript Asterisk Manager (AJAM)

As of version 1.4, Asterisk comes packaged with a small web server called AJAM, which may be used to access the Asterisk Manager Interface (AMI) via HTTP. The name "AJAM" is derived from "AJAX"[41] (Asynchronous JavaScript and XML).

Set-up assumes the steps from the section called “The Asterisk Manager Interface (AMI)” have been carried out, plus some additional parameters. You must set webenabled to yes in the [general] section of manager.conf. Pay attention to httptimeout, which defines the inactivity timeout after which the user is automatically logged out of the web interface. To activate the web server, set these parameters in http.conf:

[general]

enabled=yes

enablestatic=yes

bindaddr=127.0.0.1

bindport=8088

prefix=asterisk

enablestatic need only be activated if the AJAM will be serving static files from /var/lib/asterisk/static-http/. Normally you would set this to no, but it is needed for the purposes of the Asterisk-AJAM demo (the section called “AJAM Demo”).

Don't forget to restart!

	[image: image35.png]

	

	
	Our assessment is that it almost never makes sense to serve other web applications (that is, those intended strictly for administrator access) through the AJAM interface. It is also doubtful that it was intended to, because the rights assignments through read and write (see the section called “The Asterisk Manager Interface (AMI)”) simply don't offer sufficient granularity. Always assume that a user can initiate actions other than those you have made available on the web page. It is far better to let your application use a PHP script containing only the specific AMI commands it needs to do its job, and to restrict the AMI rights for the accessing user as extra insurance.

Example: Getting the number of voicemail messages with AJAM

Again, we are solving the problem addressed in the section called “Example: Getting the number of voicemail messages with expect” and the section called “Example: Getting the number of mailbox messages with PHP”: we want to find out the number of messages in a specified mailbox. The AJAM offers us a few ways to do this:

HTML

The AMI waits for queries at

http://localhost:8088/asterisk/manager

. Packet fields are tacked on the end of the URL. Try these addresses in your web browser:

http://localhost:8088/asterisk/manager?action=Login&username=admin&secret=secret5
http://localhost:8088/asterisk/manager?action=MailboxCount&mailbox=123

The response follows in the form of an HTML page, so it's not really suitable for access via a script.

Plain-Text

If we replace manager in the URL with rawman, we get plain text output. To log in and get a message count from the mailbox, then:

http://localhost:8088/asterisk/rawman?action=Login&username=admin&secret=secret5

Response: Success

Message: Authentication accepted

http://localhost:8088/asterisk/rawman?action=MailboxCount&mailbox=123

Response: Success

Message: Mailbox Message Count

Mailbox: 123

NewMessages: 0

OldMessages: 0

http://localhost:8088/asterisk/rawman?action=Logoff

Response: Goodbye

Message: Thanks for all the fish.

This text output is more script-friendly.

XML

If we want XML instead, we call mxml instead. The XML output is presented formatted for better readability. In practice, AJAM does not put line breaks inside the XML tags. Either way, a compliant XML parser won't care.

http://localhost:8088/asterisk/mxml?action=Login&username=admin&secret=secret5

<ajax-response>

 <response type='object' id='unknown'>

 <generic

 response='Success'

 message='Authentication accepted' />

 </response>

</ajax-response>

http://localhost:8088/asterisk/mxml?action=MailboxCount&mailbox=123

<ajax-response>

 <response type='object' id='unknown'>

 <generic

 response='Success'

 message='Mailbox Message Count'

 mailbox='123'

 newmessages='0'

 oldmessages='0' />

 </response>

</ajax-response>

http://localhost:8088/asterisk/mxml?action=Logoff

<ajax-response>

 <response type='object' id='unknown'>

 <generic

 response='Goodbye'

 message='Thanks for all the fish.' />

 </response>

</ajax-response>

AJAX and AJAM considerations

JSON

AJAX applications - as the name "Asynchronous JavaScript and XML" might suggest - use XML as the standard format, even though it is often criticized for its bloated structure. There are alternatives, such as JSON[42], for example. JSON (JavaScript Object Notation) is - the name gives it away - well-suited for Javascript applications, because the data structure can be converted into an object natively and with little overhead using eval(). There are countless implementations for PHP, Perl, etc. but a JSON implementation for AJAM does not yet exist. One can, however, convert the plain-text output into JSON on the client side, if that turns out to be easier or if it's easily done using available Javascript libraries. Here's an example to get you thinking:

// We assume the received response and

// simulate it here:

var responseText = 'Response: Success\n'

+'Message: Mailbox Message Count\n'

+'Mailbox: 123\n'

+'NewMessages: 0\n'

+'OldMessages: 0\n';

// Escape single quotation marks:

responseText = responseText.replace(/\'/g, "\\'");

// Wrap fields in quotes:

responseText = responseText.replace(/^([a-z\d]*):\s*(.*)/gmi, "'$1':'$2

',");

// Convert to object:

eval('var packet = {'+ responseText +'}');

// Now you can access the fields as you would with any object:

alert(packet['NewMessages']); // returns "0"

Ping

When accessing the AJAM with an AJAX application, the ping command is particularly useful for keeping authenticated connections alive.

http://localhost:8088/asterisk/rawman?action=Ping

Response: Pong

AJAM Demo

A small sample application demonstrating AJAX access may be run at

http://localhost:8088/asterisk/static/ajamdemo.html

. This uses the highly practical JavaScript library prototype[43] for AJAX access and displays, using the Status the currently active channels. You can use the AJAM demo as a basis for your own AJAX applications.

Apache

The Asterisk web server is a minimal implementation and cannot be seen as a wholesale replacement for a "proper" web server that can run PHP scripts or use modules, such as Apache. To unify a system that uses both, you can use Apache as a proxy for AJAM by adding

ProxyPass /ajam http://localhost:8088/asterisk

in the appropriate place in httpd.conf, so that all requests for /ajam are passed on to AJAM instead of being served by Apache.

[41] http://de.wikipedia.org/wiki/Ajax_(Programmierung)

[42] http://de.wikipedia.org/wiki/JSON

[43] http://prototype.conio.net/, also http://www.prototypejs.org/, see http://en.wikipedia.org/wiki/Prototype_Javascript_Framework or http://en.wikipedia.org/wiki/Prototype-based_programming
Chapter 7. Fax server

There have many attempts to cleanly integrate Asterisk with faxing, with inconsistent results. For a long time app_rxfax, available at http://www.soft-switch.org/ was the accepted convention. Unfortunately it is error-prone and unreliable. Faxes often arrive piecemeal or worse, not at all.

For that reason, we describe a more robust solution using IAXmodem here (see http://iaxmodem.sourceforge.net/).

A fax server with IAXmodem and Hylafax

The IAXmodem application emulates a faxmodem, which may be operated by a fax application of the administrator's choosing. We'll use the popular Hylafax. For simplicity and consistency, the installation platform will be the same Debian Linux and Asterisk 1.4 we have used for the other examples (see the section called “Installing Asterisk 1.4.x on Debian Linux 4.0 (Etch)”).

Installing IAXmodem

IAXmodem simulates a faxmodem and makes it available to Asterisk via IAX2. All the steps in this chapter must be performed as the root user.

To install IAXmodem, we need some additional Debian packages, which may be installed with the command apt-get -y install g++ libtiff-tools libtiff4 libtiff4-dev.

debian:~# apt-get -y install g++ libtiff-tools libtiff4 libtiff4-dev

Paketlisten werden gelesen... Fertig

Abhängigkeitsbaum wird aufgebaut... Fertig

Die folgenden zusätzlichen Pakete werden installiert:

 g++ libjpeg62 libjpeg62-dev libtiffxx0 zlib1g-dev

[...]

Richte zlib1g-dev ein (1.2.2-4.sarge.2) ...

Richte libtiff4-dev ein (3.7.2-7) ...

debian:~#

We switch into the appropriate directory with cd /usr/src to install the IAXmodem source code:

debian:~# cd /usr/src

debian:/usr/src#

The sources for IAXmodem can be downloaded with any typical web browser from http://iaxmodem.sourceforge.net (the version used in this example is 0.3.0). After downloading the archive, copy it to /usr/src and unpack it with tar -xvzf iaxmodem-0.3.0.tar.gz.

debian:/usr/src# tar -xvzf iaxmodem-0.3.0.tar.gz

iaxmodem-0.3.0/

iaxmodem-0.3.0/iaxmodem.c

iaxmodem-0.3.0/iaxmodem.init.debian

iaxmodem-0.3.0/Makefile.in

iaxmodem-0.3.0/CHANGES

iaxmodem-0.3.0/lib/

iaxmodem-0.3.0/lib/spandsp/

iaxmodem-0.3.0/lib/spandsp/Makefile.am

[...]

iaxmodem-0.3.0/TODO

iaxmodem-0.3.0/FAQ

iaxmodem-0.3.0/build

iaxmodem-0.3.0/iaxmodem.init.fedora

debian:/usr/src#

Change into the unpacked directory with cd iaxmodem-0.3.0:

debian:/usr/src# cd iaxmodem-0.3.0

debian:/usr/src/iaxmodem-0.3.0#

Now compile the sources with ./configure && make:

debian:/usr/src/iaxmodem-0.3.0# ./configure && make

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for gawk... no

checking for mawk... mawk

checking whether make sets $(MAKE)... yes

checking for gcc... gcc

[...]

cc -DMODEMVER=\"0.3.0\" -DDSPVER=\"spandsp-0.0.3-snapshot-20070223+\" -D

IAXVER=\"libiax2-0.2.3-CVS-20060222+\" -Wall -g -DSTATICLIBS -DUSE_UNIX9

8_PTY -std=c99 -Ilib/libiax2/src -Ilib/spandsp/src -c iaxmodem.c

cc -DMODEMVER=\"0.3.0\" -DDSPVER=\"spandsp-0.0.3-snapshot-20070223+\" -D

IAXVER=\"libiax2-0.2.3-CVS-20060222+\" -Wall -g -DSTATICLIBS -DUSE_UNIX9

8_PTY -std=c99 -Ilib/libiax2/src -Ilib/spandsp/src iaxmodem.o lib/spand

sp/src/.libs/libspandsp.a lib/libiax2/src/.libs/libiax.a -o iaxmodem -lm

 -lutil -ltiff

[...]

debian:/usr/src/iaxmodem-0.3.0#

Copy the resulting binary into /usr/bin with cp iaxmodem /usr/bin/:

debian:/usr/src/iaxmodem-0.3.0# cp iaxmodem /usr/bin/

debian:/usr/src/iaxmodem-0.3.0#

Now we can configure the modem. IAXmodem expects to find configuration files in /etc/iaxmodem. Create it with mkdir /etc/iaxmodem:

debian:/usr/src/iaxmodem-0.3.0# mkdir /etc/iaxmodem

debian:/usr/src/iaxmodem-0.3.0#

Create the configuration file with touch /etc/iaxmodem/ttyIAX0:

debian:/usr/src/iaxmodem-0.3.0# touch /etc/iaxmodem/ttyIAX0

debian:/usr/src/iaxmodem-0.3.0#

This file must contain the following parameters:

device
The device node to be created in /dev. This is the device Hylafax uses to connect to IAXmodem. You can choose any name you like, but we prefer to adhere to the convention and so choose a device name appropriate for a serial interface, ttyIAX0.

owner
This is the owner of the device (in the form user:group). It is best to use the same user and group under which Hylafax runs.

port
The port that IAXmodem listens on. Asterisk uses 4569 to listen for IAX2 connections, so you must choose something else, e.g. 4570.

refresh
This sets how long IAXmodem waits between registrations with Asterisk. If this number is 0, the modem does not register at all.

server
IP address of the server running Asterisk. If this is on the same machine as IAXmodem, use the localhost address 127.0.0.1.

peername
The name under which IAXmodem registers with Asterisk.

secret
The password used for Asterisk registration.

codec
The codec used by IAXmodem. Allowed codecs are alaw, ulaw and slinear. Compressed codecs are not appropriate for faxing; fax transmissions are themselves compressed and don't tolerate further compression; moreover, most compressed codecs are lossy and a fax transmission will not tolerate losses. This is one of the major reasons why faxing over VoIP remains problematic.

Using an appropriate editor (e.g. vi) we write the following configuration in the file /etc/iaxmodem/ttyIAX0:

device /dev/ttyIAX0

owner uucp:uucp

mode 660

port 4570

refresh 50

server 127.0.0.1

peername iaxmodem

secret password

codec alaw

IAXmodem is now configured and can be started. The best way to do this is with init. Add a line to start IAXmodem to /etc/inittab with echo "IA00:23:respawn:/usr/bin/iaxmodem ttyIAX0" >> /etc/inittab:

debian:/usr/src/iaxmodem-0.3.0# echo "IA00:23:respawn:/usr/bin/iaxmodem

ttyIAX0" >> /etc/inittab

debian:/usr/src/iaxmodem-0.3.0#

The device name ttyIAX0 is the same device name as specified in /etc/iaxmodem.

To receive faxes, we need a getty that listens for connections on the IAXmodem. This is accomplished through an additional entry in /etc/inittab. Add it with echo "mo00:23:respawn:/usr/sbin/faxgetty ttyIAX0" >> /etc/inittab.

mo00:23:respawn:/usr/local/sbin/faxgetty ttyIAX0

Create a log directory for IAXmodem with mkdir /var/log/iaxmodem/ and the log files with touch /var/log/iaxmodem/ttyIAX0 and touch /var/log/iaxmodem/iaxmodem.

debian:/usr/src/iaxmodem-0.3.0# mkdir /var/log/iaxmodem/

debian:/usr/src/iaxmodem-0.3.0# touch /var/log/iaxmodem/ttyIAX0

debian:/usr/src/iaxmodem-0.3.0# touch /var/log/iaxmodem/iaxmodem

debian:/usr/src/iaxmodem-0.3.0#

To make sure everything will start as expected at boot time, reboot the system with shutdown -r now.

debian:/usr/src/iaxmodem-0.3.0# shutdown -r now

Broadcast message from root@debian (pts/1) (Sat May 5 00:15:49 2007):

The system is going down for reboot NOW!

debian:/usr/src/iaxmodem-0.3.0#

Installing Hylafax

We'll install Hylafax from the Debian Repository to simplify installation. Do this with apt-get -y install hylafax-server . Dependencies are automatically resolved:

debian:~# apt-get install -y hylafax-server

Paketlisten werden gelesen... Fertig

Abhängigkeitsbaum wird aufgebaut... Fertig

Die folgenden zusätzlichen Pakete werden installiert:

 enscript gs-common gs-esp hylafax-client libcupsimage2 libcupsys2 mail

x metamail psmisc

Vorgeschlagene Pakete:

 gv postscript-viewer lpr gs-pdfencrypt gs-cjk-resource mgetty-viewfax

hylafax-doc mgetty cupsys-common

Empfohlene Pakete:

 psfontmgr netpbm transfig

Die folgenden NEUEN Pakete werden installiert:

 enscript gs-common gs-esp hylafax-client hylafax-server libcupsimage2

libcupsys2 mailx metamail psmisc

[...]

Update /var/spool/hylafax/status/any.info.

 HylaFAX configuration parameters are:

 [1] Init script starts faxq: yes

 [2] Init script starts hfaxd yes

 [3] Start old protocol: no

 [4] Start paging protocol: no

Are these ok [yes]?

Modem support functions written to /var/spool/hylafax/etc/setup.modem.

Configuration parameters written to /var/spool/hylafax/etc/setup.cache.

Restarting HylaFAX server processes.

Should I restart the HylaFAX server processes [yes]?

You do not appear to have any modems configured for use. Modems are

configured for use with HylaFAX with the faxaddmodem(8) command.

Do you want to run faxaddmodem to configure a modem [yes]?

Done verifying system setup.

Updating /etc/hylafax/setup.cache from /var/spool/hylafax/etc/setup.cach

e.

Updating /etc/hylafax/setup.modem from /var/spool/hylafax/etc/setup.mode

m.apt-get -y install hylafax-server

/var/spool/hylafax

Starting HylaFAX: faxq hfaxd faxgetty.

debian:~#

The next step is the configuration of the fax server. Do this with faxsetup:

debian:/usr/src/hylafax-4.3.4# faxsetup

[...]

Update /var/spool/hylafax/status/any.info.

 HylaFAX configuration parameters are:

 [1] Init script starts faxq: yes

 [2] Init script starts hfaxd yes

 [3] Start old protocol: no

 [4] Start paging protocol: no

Are these ok [yes]?

Simply press Enter after the following 2-3 questions.

You have a HylaFAX scheduler process running. faxq will be

restarted shortly, as soon as some other work has been completed.

Can I terminate this faxq process (4048) [yes]?

Should I restart the HylaFAX server processes [yes]?

/etc/init.d/hylafax start

Not starting HylaFAX daemons since they are already running.

[...]

Modems are configured for use with HylaFAX with the faxaddmodem(8) comma

nd.

Do you want to run faxaddmodem to configure a modem [yes]?

We confirm restart of the server processes with yes and are asked if we want to install a modem. Our IAXmodem is already set up so we can proceed and confirm again with yes.

Specify the modem and confirm with Enter.

Serial port that modem is connected to [ttyS0]? ttyIAX0

Ok, time to setup a configuration file for the modem. The manual

page config(5) may be useful during this process. Also be aware

that at any time you can safely interrupt this procedure.

Reading scheduler config file /var/spool/hylafax/etc/config.

Many questions follow, but only a few of them are really important.[44]This is where you set international dialing codes, the fax number, country and area code, and the CSID (Call Subscriber ID) which is printed on the top line of the fax page on the receiver's end. Confirm with yes.

No existing configuration, let's do this from scratch.

Country code [1]? 1

Area code []? 403

Phone number of fax modem [+1.999.555.1212]? +1 888 555 4091

Local identification string (for TSI/CIG) ["NothingSetup"]?

Long distance dialing prefix [1]? 1

International dialing prefix [011]? 011

Dial string rules file (relative to /var/spool/hylafax) [etc/dialrules]?

Tracing during normal server operation [1]?

Tracing during send and receive sessions [11]?

Protection mode for received facsimile [0600]?

Protection mode for session logs [0600]?

Protection mode for ttyIAX0 [0600]?

Rings to wait before answering [1]?

Modem speaker volume [off]?

Command line arguments to getty program ["-h %l dx_%s"]?

Pathname of TSI access control list file (relative to /var/spool/hylafax

) [""]?

Pathname of Caller-ID access control list file (relative to /var/spool/h

ylafax) [""]?

Tag line font file (relative to /var/spool/hylafax) [etc/lutRS18.pcf]?

Tag line format string ["From %%l|%c|Page %%P of %%T"]?

Time before purging a stale UUCP lock file (secs) [30]?

Hold UUCP lockfile during inbound data calls [Yes]?

Hold UUCP lockfile during inbound voice calls [Yes]?

Percent good lines to accept during copy quality checking [95]?

Max consecutive bad lines to accept during copy quality checking [5]?

Max number of pages to accept in a received facsimile [25]?

Syslog facility name for ServerTracing messages [daemon]?

Set UID to 0 to manipulate CLOCAL [""]?

Use available priority job scheduling mechanism [""]?

A confirmation page follows where you can double-check your entries:

The non-default server configuration parameters are:

CountryCode: 1

AreaCode: 403

FAXNumber: +1 888 555 4091

LongDistancePrefix: 0

InternationalPrefix: 00

DialStringRules: etc/dialrules

SessionTracing: 11

RingsBeforeAnswer: 1

SpeakerVolume: off

GettyArgs: "-h %l dx_%s"

LocalIdentifier: "NothingSetup"

TagLineFont: etc/lutRS18.pcf

TagLineFormat: "From %%l|%c|Page %%P of %%T"

MaxRecvPages: 25

Are these ok [yes]?

Answering yes brings us to modem detection:

Now we are going to probe the tty port to figure out the type

of modem that is attached. This takes a few seconds, so be patient.

Note that if you do not have the modem cabled to the port, or the

modem is turned off, this may hang (just go and cable up the modem

or turn it on, or whatever).

Probing for best speed to talk to modem: 38400 OK.

About fax classes:

The difference between fax classes has to do with how HylaFAX interacts

with the modem and the fax protocol features that are used when sending

or receiving faxes. One class isn't inherently better than another;

however, one probably will suit a user's needs better than others.

Class 1 relies on HylaFAX to perform the bulk of the fax protocol.

Class 2 relies on the modem to perform the bulk of the fax protocol.

Class 2.0 is similar to Class 2 but may include more features.

Class 1.0 is similar to Class 1 but may add V.34-fax capability.

Class 2.1 is similar to Class 2.0 but adds V.34-fax capability.

HylaFAX generally will have more features when using Class 1/1.0 than

when using most modems' Class 2 or Class 2.0 implementations. Generally

any problems encountered in Class 1/1.0 can be resolved by modifications

to HylaFAX, but usually any problems encountered in Class 2/2.0/2.1 will

require the modem manufacturer to resolve it.

If you're unsure and your modem supports it, use Class 1.

This modem looks to have support for Class 1 and 1.0.

How should it be configured [1]?

Hmm, this looks like a Class 1 modem.

Product code (ATI0) is "spandsp".

Other information (ATI3) is "www.soft-switch.org".

DTE-DCE flow control scheme [default]?

Modem manufacturer is "spandsp".

Modem model is "IAXmodem".

Using prototype configuration file iaxmodem...

The modem configuration parameters are:

ModemResetCmds: "ATH1\nAT+VCID=1"

Are these ok [yes]?

The modem was detected and we are asked if it is a Class 1 modem, and we confirm this because it is exactly what we want. The default reset commands are also acceptable. Confirm with yes.

Answer the first question In the next dialog with no, since we don't need to configure any further modems. The second question is confirmed with by pressing Enter, which starts the fax server.

Creating new configuration file /var/spool/hylafax/etc/config.ttyIAX0...

Creating fifo /var/spool/hylafax/FIFO.ttyIAX0 for faxgetty... done.

Done setting up the modem configuration.

[...]

Do you want to run faxaddmodem to configure another modem [yes]? no

[...]

Should I run faxmodem for each configured modem [yes]?

/usr/sbin/faxmodem ttyIAX0

Done verifying system setup.

/var/spool/hylafax

debian:~#

Hylfax is now configured for sending faxes.

Receiving faxes

Our fax solution still has to be integrated into Asterisk. To do this, we configure the IAXmodem as an IAX2 peer by adding a section to /etc/asterisk/iax.conf (see also ???):

[general]

bindport = 4569

bindaddr = 0.0.0.0

disallow=all

allow=ulaw

allow=alaw

[iaxmodem]

type=friend

secret=password

port=4570

host=dynamic

context=fax-out

disallow=all

allow=alaw

Global settings are defined in the general section. In this example we are binding the standard IAX2 port of 4569. The bindaddr defines the IP address (and thereby the interface) on which the IAX2 channel driver listens for connections; in this case, it is set to listen on all interfaces.

The IAXmodem is set to type friend, which allows both incoming and outgoing connections. The secret and port parameters match those in the IAXmodem configuration we did above, and context defines the entry context for outgoing connections.

Enter iax2 show peers in the Asterisk console to see our new IAXmodem:

*CLI> iax2 show peers

Name/Username Host Mask Port Sta

tus

iaxmodem 127.0.0.1 (D) 255.255.255.255 4570 Unm

onitored

1 iax2 peers [0 online, 0 offline, 1 unmonitored]

*CLI>

We are, of course, not done yet. Asterisk still needs an extension so that it knows what to do with an incoming fax. Our objective is to ensure that any incoming faxes are passed on to Hylafax. In this example, we assume that all faxes come in through a SIP provider. A real configuration will have to reflect the installation and account settings of the SIP provider you use; for the sake of example, a configuration in sip.conf might look like this:

[...]

[123456]

type=friend

insecure=very;

nat=yes

username=123456

fromuser=12345

fromdomain=my-voip-provider.com

secret=secret

host=my-voip-provider.com

qualify=yes

context=fax-in

[...]

The corresponding context in extensions.conf would look like this:

[fax-in]

exten => _X.,1,Dial(IAX2/iaxmodem)

Any faxes coming in will now be routed to Hylafax via IAXmodem and ultimately e-mailed to the user address defined in the faxmaster alias.

Sending faxes

The next obvious step is configuring our system to send faxes. Here, too, we need a context (this time it is [fax-out]) in extensions.conf. If IAXmodem wants to send a fax, it will automatically land in this context. If the faxes are to go out our hypothetical SIP connection 123456, the entry in extensions.conf will look like this:

[fax-out]

exten => _X.,1,Dial(SIP/123456/${EXTEN})

We can test sending of faxes with sendfax -n -d <faxnumber> <file.txt>:

debian:~# sendfax -n -d 6045557977 /etc/issue.net

We should see this in the CLI:

 -- Accepting AUTHENTICATED call from 127.0.0.1:

 > requested format = alaw,

 > requested prefs = (),

 > actual format = alaw,

 > host prefs = (alaw),

 > priority = mine

 -- Executing Answer("IAX2/iaxmodem-3", "") in new stack

 -- Executing Dial("IAX2/iaxmodem-3", "SIP/123456/6045557977") in new

 stack

 -- Called 123456/6045557977

 -- SIP/123456-0818f630 is making progress passing it to IAX2/iaxmode

m-3

 -- SIP/123456-0818f630 answered IAX2/iaxmodem-3

 -- parse_srv: SRV mapped to host my-voip-provider.com, port 5060

 == Spawn extension (fax-out, 6045557977, 2) exited non-zero on 'IAX2/i

axmodem-3'

 -- Executing Hangup("IAX2/iaxmodem-3", "") in new stack

 == Spawn extension (fax-out, h, 1) exited non-zero on 'IAX2/iaxmodem-3

'

 -- Hungup 'IAX2/iaxmodem-3'

If we issue the command faxstat -s during the transmission, we will see:

debian:~# faxstat -s

HylaFAX scheduler on w077.example.com: Running

Modem ttyIAX0 (123456): Sending job 7

JID Pri S Owner Number Pages Dials TTS Status

7 127 R root 06912345678 0:1 0:12

debian:~#

Done! Now you can send and receive faxes via Asterisk using Hylafax.

The Hylafax website http://www.hylafax.org has numerous examples and how-tos that will help you integrate your Hylafax installation with your existing office intrastructure effectively.

Sending received faxes as e-mail

The following steps illustrate how we can configure Hylafax to transmit incoming faxes to a pre-defined e-mail address.[45]The recipient will receive the fax as an e-mail attachment.

To do this, the configuration file /var/spool/hylafax/etc/FaxDispatch must contain the following parameters:

SENDTO
The destination e-mail address for incoming faxes.

FILETYPE
The format of the attachment. In addition to pdf, tiff (Tagged Image File Format) and ps (Postscript™) are also acceptable options.

SENDTO=fax-incoming@company.com

FILETYPE=pdf

After the file has been saved, you must restart the fax server with /etc/init.d/hylafax restart.

debian:~# /etc/ini.d/hylafax restart

Starting HylaFAX: faxq hfaxd.

debian:~#

We can test e-mail transmission by sending ourselves a fax with sendfax -n -d <faxnumber> <file.txt>
debian:~# sendfax -n -d 6045557977 /etc/issue.net

After a short time your target e-mail address should receive an e-mail in the following format:

 recvq/fax000000016.tif (ftp://debian:4559/recvq/fax000000016.tif):

 Sender: IAXmodem

 Pages: 4

 Quality: Normal

 Size: North American Letter

 Received: 2007:06:02 02:49:45

 Time To Receive: 1:58

 Signal Rate: 9600 bit/s

 Data Format: 2-D MMR

 Error Correct: Yes

 CallID1: 2007

 CallID2: IAXmodem 1

 Received On: ttyIAX0

 CommID: 000000033 (ftp://debian:4559/log/c000000033)

[...]

Jun 02 02:51:46.99: [3320]: RECV FAX: bin/faxrcvd "recvq/fax000000016.t

if" "ttyIAX0" "000000033" "COMREC received DCN" "2007" "IAXmodem 1" "<NO

NE>" "s"

Jun 02 02:51:47.00: [3320]: RECV FAX: end

Jun 02 02:51:47.00: [3320]: SESSION END

Jun 02 02:51:47.01: [3320]: RECV FAX (000000033): recvq/fax000000016.ti

f from IAXmodem, route to <unspecified>, 4 pages in 2:08

The attachment will be a PDF file. In this example, the PDF is named fax000000016.pdf.

Now you can not only send and receive faxes, but received faxes are also received as e-mail attachments.

IAXmodem and Hylafax FAQ

	1.1.
	Where does Hylafax save received faxes?

	
	In /var/spool/hylafax/recvq .

	1.2.
	Can I use something other than Hylafax?

	
	Yes, absolutely. Nevertheless, Hylafax has proven to be very robust and flexible and is widely used.

	1.3.
	Is there an easy to use Faxclient for Windows?

	
	Yes, please have a look at the Hylafax Client page at http://www.hylafax.org/content/Client_Software.

	1.4.
	Does Hylafax have its own FAQ?

	
	Yes. You can find it at http://www.hylafax.org/content/FAQ.

[44] May those who have tuned Hylafax before forgive us; for now, the defaults will do.

[45] Our example assumes a properly configured MTA (e.g. Sendmail, Postfix or a lightweight SMTP engine like ssmtp).

Appendix A. Installation instructions for Asterisk 1.4

	[image: image36.png]

	

	
	The installation instructions in this appendix assume an installation on a freshly-installed operating system. If you deviate from this (e.g. using a server with a previously installed operating system that has been running for some time) you may encounter problems, depending on the specific circumstances. When troubleshooting any problems which arise, we recommend you proceed through the installation exactly as it is described here first.

It is in the nature of a book and any rapidly changing software that the installation procedure will change from time to time. When in doubt, please check the on-line version at http://www.the-asterisk-book.com.

Installing Asterisk 1.4.x on Debian Linux 4.0 (Etch)

Following these instructions will install the components necessary to use all the features covered in this book (except where otherwise indicated). As a result, it is a little more comprehensive than a typical installation but offers the advantage that you won't have to install additional components in future.

We assume a freshly installed Debian GNU/Linux 4.0 (a.k.a Etch). You can obtain an ISO image for the net-based install of x86 Debian Linux at http://www.debian.org/releases/etch/debian-installer/. A Debian GNU/Linux installation manual may be found at http://www.debian.org/releases/etch/i386/.

Before starting, please log in as root.
	[image: image37.png]

	

	
	For the sake of brevity, verbose output has been trimmed. Editorial omissions are indicated with [...].

Update the Debian package listing with apt-get update:

debian:~# apt-get update

Ign cdrom://[Debian GNU/Linux 4.0 r0 _Etch_ - Official i386 NETINST Bina

ry-1 20070407-11:29] etch Release.gpg

Ign cdrom://[Debian GNU/Linux 4.0 r0 _Etch_ - Official i386 NETINST Bina

ry-1 20070407-11:29] etch Release

Ign cdrom://[Debian GNU/Linux 4.0 r0 _Etch_ - Official i386 NETINST Bina

ry-1 20070407-11:29] etch/contrib Packages/DiffIndex

Ign cdrom://[Debian GNU/Linux 4.0 r0 _Etch_ - Official i386 NETINST Bina

ry-1 20070407-11:29] etch/main Packages/DiffIndex

Get:1 http://security.debian.org etch/updates Release.gpg [189B]

Get:2 http://ftp.debian.org etch Release.gpg [378B]

Hit http://security.debian.org etch/updates Release

Hit http://ftp.debian.org etch Release

Ign http://security.debian.org etch/updates/main Packages/DiffIndex

Ign http://ftp.debian.org etch/main Packages/DiffIndex

Ign http://security.debian.org etch/updates/contrib Packages/DiffIndex

Ign http://security.debian.org etch/updates/main Sources/DiffIndex

Ign http://ftp.debian.org etch/main Sources/DiffIndex

Ign http://security.debian.org etch/updates/contrib Sources/DiffIndex

Hit http://security.debian.org etch/updates/main Packages

Hit http://ftp.debian.org etch/main Packages

Hit http://security.debian.org etch/updates/contrib Packages

Hit http://ftp.debian.org etch/main Sources

Hit http://security.debian.org etch/updates/main Sources

Hit http://security.debian.org etch/updates/contrib Sources

Fetched 2B in 1s (1B/s)

Reading package lists... Done

debian:~#

Now update all the currently installed packages with apt-get -y upgrade:

debian:~# apt-get -y upgrade

Reading package lists... Done

Building dependency tree... Done

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

debian:~#

Just for the case the the upgrade installed a new kernel we have to reboot the system with shutdown -r now

debian:~# shutdown -r now

Broadcast message from root@debian (pts/0) (Fri May 4 19:43:09 2007):

The system is going down for reboot NOW!

After the reboot we have to login again as root.

A few more packages are needed to satisfy Asterisk build dependencies. Do apt-get -y install build-essential libncurses5-dev libcurl3-dev libvorbis-dev libspeex-dev unixodbc unixodbc-dev libiksemel-dev linux-headers-`uname -r`.
debian:~# apt-get -y install build-essential libncurses5-dev libcurl3-de

v libvorbis-dev libspeex-dev unixodbc unixodbc-dev libiksemel-dev linux-

headers-`uname -r`

Reading package lists... Done

Building dependency tree... Done

The following extra packages will be installed:

 binutils ca-certificates comerr-dev cpp cpp-4.1 defoma dpkg-dev fontco

nfig

 fontconfig-config g++ g++-4.1 gcc gcc-4.1 libaudio2 libc6-dev libcurl3

 libcurl3-openssl-dev libexpat1 libfontconfig1 libfreetype6 libice6

 libidn11-dev libiksemel3 libjpeg62 libkadm55 libkrb5-dev liblcms1 libl

tdl3

 libltdl3-dev libmng1 libodbcinstq1c2 libogg-dev libogg0 libpng12-0 lib

qt3-mt

 libsm6 libspeex1 libssl-dev libssp0 libstdc++6-4.1-dev libvorbis0a

 libvorbisenc2 libvorbisfile3 libx11-6 libx11-data libxau6 libxcursor1

 libxdmcp6 libxext6 libxfixes3 libxft2 libxi6 libxinerama1 libxrandr2

 libxrender1 libxt6 linux-headers-2.6.18-4 linux-kbuild-2.6.18

 linux-kernel-headers make odbcinst1debian1 openssl pkg-config ttf-deja

vu

 x11-common zlib1g-dev

Suggested packages:

 binutils-doc doc-base cpp-doc gcc-4.1-locales defoma-doc psfontmgr

 x-ttcidfont-conf dfontmgr debian-keyring gcc-4.1-doc lib64stdc++6

 manpages-dev autoconf automake1.9 libtool flex bison gdb gcc-doc

 libc6-dev-amd64 lib64gcc1 lib64ssp0 nas glibc-doc libcurl3-dbg

 libfreetype6-dev krb5-doc liblcms-utils libtool-doc libqt3-mt-psql

 libqt3-mt-mysql libqt3-mt-odbc speex libstdc++6-4.1-doc make-doc-non-d

fsg

 libgnome-dev libmyodbc odbc-postgresql libct1 libqt3-mt-dev

Recommended packages:

 libft-perl bzip2 libmudflap0-dev libgl1-mesa-glx libgl1 libglu1-mesa l

ibglu1

 libxmu6

The following NEW packages will be installed:

 binutils build-essential ca-certificates comerr-dev cpp cpp-4.1 defoma

 dpkg-dev fontconfig fontconfig-config g++ g++-4.1 gcc gcc-4.1 libaudio

2

 libc6-dev libcurl3 libcurl3-dev libcurl3-openssl-dev libexpat1

 libfontconfig1 libfreetype6 libice6 libidn11-dev libiksemel-dev libiks

emel3

 libjpeg62 libkadm55 libkrb5-dev liblcms1 libltdl3 libltdl3-dev libmng1

 libncurses5-dev libodbcinstq1c2 libogg-dev libogg0 libpng12-0 libqt3-m

t

 libsm6 libspeex-dev libspeex1 libssl-dev libssp0 libstdc++6-4.1-dev

 libvorbis-dev libvorbis0a libvorbisenc2 libvorbisfile3 libx11-6 libx11

-data

 libxau6 libxcursor1 libxdmcp6 libxext6 libxfixes3 libxft2 libxi6

 libxinerama1 libxrandr2 libxrender1 libxt6 linux-headers-2.6.18-4

 linux-headers-2.6.18-4-686 linux-kbuild-2.6.18 linux-kernel-headers ma

ke

 odbcinst1debian1 openssl pkg-config ttf-dejavu unixodbc unixodbc-dev

 x11-common zlib1g-dev

0 upgraded, 75 newly installed, 0 to remove and 0 not upgraded.

Need to get 23.1MB/38.1MB of archives.

After unpacking 137MB of additional disk space will be used.

Get:1 http://ftp.debian.org etch/main libice6 1:1.0.1-2 [42.6kB]

Get:2 http://ftp.debian.org etch/main libsm6 1:1.0.1-3 [18.0kB]

[...]

Setting up libvorbis-dev (1.1.2.dfsg-1.2) ...

Setting up linux-headers-2.6.18-4 (2.6.18.dfsg.1-12) ...

Setting up linux-kbuild-2.6.18 (2.6.18-1) ...

Setting up linux-headers-2.6.18-4-686 (2.6.18.dfsg.1-12) ...

Setting up unixodbc-dev (2.2.11-13) ...

Setting up libstdc++6-4.1-dev (4.1.1-21) ...

Setting up g++-4.1 (4.1.1-21) ...

Setting up g++ (4.1.1-15) ...

Setting up build-essential (11.3) ...

debian:~#

Now change into the /usr/src directory with cd /usr/src:

debian:~# cd /usr/src

debian:/usr/src#

Find the Asterisk sources you need at the official homepage: http://www.asterisk.org/. Take care to use only a stable, current version and not a development version. Download it to /usr/src with wget http://downloads.digium.com/pub/asterisk/asterisk-1.4-current.tar.gz:

debian:/usr/src# wget http://downloads.digium.com/pub/asterisk/asterisk-

1.4-current.tar.gz

--13:03:47-- http://downloads.digium.com/pub/asterisk/asterisk-1.4-curr

ent.tar.gz

 => `asterisk-1.4-current.tar.gz'

Resolving downloads.digium.com... 216.27.40.102, 69.16.138.164

Connecting to downloads.digium.com|216.27.40.102|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 17,081,631 (16M) [application/x-gzip]

100%[====================================>] 17,081,631 263.92K/s ET

A 00:00

13:04:56 (244.60 KB/s) - `asterisk-1.4-current.tar.gz' saved [17081631/1

7081631]

debian:/usr/src#

You will need the current Zaptel drivers as well. Get them with wget http://downloads.digium.com/pub/zaptel/zaptel-1.4-current.tar.gz:

debian:/usr/src# wget http://downloads.digium.com/pub/zaptel/zaptel-1.4-

current.tar.gz

--13:06:49-- http://downloads.digium.com/pub/zaptel/zaptel-1.4-current.

tar.gz

 => `zaptel-1.4-current.tar.gz'

Resolving downloads.digium.com... 216.27.40.102, 69.16.138.164

Connecting to downloads.digium.com|216.27.40.102|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 2,839,262 (2.7M) [application/x-gzip]

100%[====================================>] 2,839,262 263.92K/s ET

A 00:00

13:06:59 (260.09 KB/s) - `zaptel-1.4-current.tar.gz' saved [2839262/2839

262]

debian:/usr/src#

Unpack the compressed tar archives with tar xvzf asterisk-1.4-current.tar.gz && tar xvzf zaptel-1.4-current.tar.gz:

debian:/usr/src# tar xvzf asterisk-1.4-current.tar.gz && tar xvzf zaptel

-1.4-current.tar.gz

asterisk-1.4.2/

asterisk-1.4.2/build_tools/

asterisk-1.4.2/build_tools/menuselect-deps.in

asterisk-1.4.2/build_tools/get_moduleinfo

asterisk-1.4.2/build_tools/mkpkgconfig

asterisk-1.4.2/build_tools/embed_modules.xml

asterisk-1.4.2/build_tools/get_makeopts

asterisk-1.4.2/build_tools/make_version

[...]

zaptel-1.4.1/timertest.c

zaptel-1.4.1/mec3-float.h

zaptel-1.4.1/zaptel.init

zaptel-1.4.1/hdlcverify.c

zaptel-1.4.1/fxstest.c

zaptel-1.4.1/zaptel-base.c

debian:/usr/src#

Asterisk 1.4 is the first version of Asterisk that uses the standard Unix/Linux autoconf mechanism.
	[image: image38.png]

	

	
	Asterisk is a very dynamic project; as such, the version numbers in the examples depicted below will increase frequently and over time. Documentation is by its nature static and it is not always possible to keep version numbers current. We ask that you keep this in mind and notify us of changes.

We build the Zaptel drivers first. Change into the Zaptel directory with cd zaptel-1.4.1 and build it with ./configure && make && make install:

debian:/usr/src# cd zaptel-1.4.1

debian:/usr/src/zaptel-1.4.1# ./configure && make && make install

checking for gcc... gcc

checking for C compiler default output file name... a.out

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

[...]

/usr/bin/install -c -m 644 doc/zttool.8 /usr/share/man/man8

[`id -u` = 0] && /sbin/depmod -a 2.6.18-4-686 || :

[-f /etc/zaptel.conf] || /usr/bin/install -c -D -m 644 zaptel.conf.sam

ple /etc/zaptel.conf

build_tools/genmodconf linux26 "" "pciradio tor2 torisa wcfxo wct1xxp wc

tdm wctdm24xxp wcte11xp wcusb ztd-eth ztd-loc wcte12xp wct4xxp wctc4xxp

wcfxs wctdm8xxp wct2xxp"

Building /etc/modprobe.d/zaptel...

*** WARNING:

*** If you had custom settings in /etc/modprobe.d/zaptel,

*** they have been moved to /etc/modprobe.d/zaptel.bak.

*** In the future, do not edit /etc/modprobe.d/zaptel, but

*** instead put your changes in another file

*** in the same directory so that they will not

*** be overwritten by future Zaptel updates.

debian:/usr/src/zaptel-1.4.1#

Asterisk MeetMe conferences require a timing source. In the absence of a hardware timing source, we use the software timing source contained in the ztdummy kernel module. Load the module with modprobe ztdummy:

debian:/usr/src/zaptel-1.4.1# modprobe ztdummy

debian:/usr/src/zaptel-1.4.1#

Now we can build Asterisk. Enter the Asterisk source directory with cd /usr/src/asterisk-1.4.2 and build it with ./configure && make && make install:

debian:/usr/src/zaptel-1.4.1# cd /usr/src/asterisk-1.4.2

debian:/usr/src/asterisk-1.4.2# ./configure && make && make install

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

checking for gcc... gcc

checking for C compiler default output file name... a.out

checking whether the C compiler works... yes

[...]

for x in ; do /usr/bin/install -c -m 755 $x /usr/lib/asterisk/modules ;

done

make[1]: Leaving directory `/usr/src/asterisk-1.4.2/main'

 +---- Asterisk Installation Complete -------+

 + +

 + YOU MUST READ THE SECURITY DOCUMENT +

 + +

 + Asterisk has successfully been installed. +

 + If you would like to install the sample +

 + configuration files (overwriting any +

 + existing config files), run: +

 + +

 + make samples +

 + +

 +----------------- or ---------------------+

 + +

 + You can go ahead and install the asterisk +

 + program documentation now or later run: +

 + +

 + make progdocs +

 + +

 + **Note** This requires that you have +

 + doxygen installed on your local system +

 +---+

debian:/usr/src/asterisk-1.4.2#

Asterisk is now installed, but we're not finished yet. Essential configuration files in /etc/asterisk do not yet exist. Rather than start from scratch, we install a set of sample configuration files with make samples:

debian:/usr/src/asterisk-1.4.2# make samples

mkdir -p /etc/asterisk

for x in configs/*.adsi; do \

 if [! -f /etc/asterisk/$x]; then \

 /usr/bin/install -c -m 644 $x /etc/asterisk/`/usr/bin/ba

sename $x` ; \

 fi ; \

[...]

for x in vm-theperson digits/1 digits/2 digits/3 digits/4 vm-isonphone;

do \

 cat /var/lib/asterisk/sounds/$x.gsm >> /var/spool/asterisk/voice

mail/default/1234/busy.gsm ; \

done

debian:/usr/src/asterisk-1.4.2#

Done! Asterisk is ready to go! Check the installed version with asterisk -V (uppercase V):

debian:/usr/src/asterisk-1.4.2# asterisk -V

Asterisk 1.4.2

debian:/usr/src/asterisk-1.4.2#

Start-up and shutdown scripts

To make sure that Asterisk starts automatically at boot time and shuts down cleanly during shutdown or reboot, we need init scripts. Install them from the /usr/src/asterisk-1.4.2 directory with make config:

debian:/usr/src/asterisk-1.4.2# make config

 Adding system startup for /etc/init.d/asterisk ...

 /etc/rc2.d/K91asterisk -> ../init.d/asterisk

 /etc/rc3.d/K91asterisk -> ../init.d/asterisk

 /etc/rc4.d/K91asterisk -> ../init.d/asterisk

 /etc/rc5.d/K91asterisk -> ../init.d/asterisk

 /etc/rc2.d/S10asterisk -> ../init.d/asterisk

 /etc/rc3.d/S10asterisk -> ../init.d/asterisk

 /etc/rc4.d/S10asterisk -> ../init.d/asterisk

 /etc/rc5.d/S10asterisk -> ../init.d/asterisk

debian:/usr/src/asterisk-1.4.2#

The ztdummy kernel module must also start at boot time; add it to /etc/modules with echo "ztdummy" >> /etc/modules:

debian:/usr/src/asterisk-1.4.2# echo "ztdummy" >> /etc/modules

debian:/usr/src/asterisk-1.4.2#

Appendix B. Applications in the dialplan

This section is a comprehensive description of the applications available for use in the dialplan (/etc/asterisk/extensions.conf). To use an application, the module to which it belongs must be loaded; this is configured in the [modules] section of /etc/asterisk/modules.conf with autoload=yes or explicitly with load => app_applicationname.so. You can see which modules and applications are available in Asterisk with by entering show applications or show application application_name (Asterisk 1.2) and core show applications oder core show application application_name (Asterisk 1.4).

Take care not to confuse applications or commands with functions. When required, functions are called within commands in the dialplan. "Application" is perhaps too expansive a term but it is the convention in Asterisk when referring to dialplan commands.

A brief aside: the configuration files in Asterisk use the obtuse INI format (which may be familiar to you if you have worked with a certain, widely-distributed operating system). No grammatical standard was ever publicly released for INI, and the parser does not follow generally accepted conventions for tokenizing and lexical and syntactical analysis. This is why the Asterisk fork project, OpenPBX, has elected to switch over to the "property list" (.plist) format used in MacOS X for which the standards are publicly available.

Hence: because of the lack of a formal specification, the expected syntax is not always clear - for example, where spaces would be allowed or whether double quotes are required or not. In many cases, multiple conventions are accepted. When in doubt, only experimentation will let you know for certain. Should you identify errors, we ask that you contact us so that we may include the new information in future editions.

It is often possible to omit parameters entirely. In those cases, it is still necessary to include the comma delimiter to establish that a parameter is empty or not provided (i.e. that the default value should be used). For example:

exten => s,1,Dial(IAX2/User:password@example.com/123,,tT)

In general, if an application exits with an error it will return -1, if successful it returns a 0. A return value of -1 means that Asterisk will hang up the channel without passing it along the dialplan.

	[image: image39.png]

	

	
	Be sure to separate parameters with the "," (comma) or "|" (pipe) depending on the version of Asterisk. In this book we use the "," primarily.

Anyone who has used Asterisk for some time already might wonder why one or another application is not included here. The missing applications have been deprecated in Asterisk 1.2 and have ceased to exist altogether in Asterisk 1.4. The corresponding functions which replace them can be found in Appendix C, Functions in the dialplan. The diff output of the built-in help files provided is always shown from the newer 1.4 to the older 1.2.

In the examples the arbitrarily chosen extension 123 and priority 1 are used, just for the purposes of illustration.

Before Asterisk 1.2, many applications jumped to priority n+101, if present, in case of an error (where n is the current priority). This old behavior (called "priority jumping") can be re-enabled with the option j (jump) for some commands or globally via the parameter priorityjumping=yes in the [general] section of extensions.conf. This method, however, is now deprecated. The objectives once met by priority jumping are now achieved by calling defined channel variables, which are considerably more powerful.

To enhance the utility of this book as a reference, the applications are listed in alphabetical order. They also can be arranged into logical categories, shown here:

Call handling (pick-up, transfer, hang-up, ...)

	the section called “Answer()” - Answer

	the section called “Busy()” - Signal busy to caller

	the section called “ChanIsAvail()” - Check to see if a channel is available

	the section called “ChannelRedirect()” - Redirect a channel to another extension and/or priority

	the section called “Congestion()” - Signal congestion to caller

	the section called “Dial()” - Initiate a call to a channel / connect to a channel

	the section called “DISA()” - DISA (Direct Inward System Access)

	the section called “FollowMe()” - "follow me" function

	the section called “Hangup()” - Hang up

	the section called “Page()” - Page multiple devices

	the section called “Park()” - Park call

	the section called “Pickup()” - Call pickup

	the section called “RetryDial()” - Dial() with auto-redial

	the section called “Ringing()” - Signal ringing to caller

Flow control and timeouts
	the section called “ContinueWhile()” - Jump to the beginning of a While() loop

	the section called “EndWhile()” - End a While() loop

	the section called “Exec()” - Launch an application

	the section called “ExecIf()” - Conditional launch of an application

	the section called “ExecIfTime()” - Time conditional launch of an application

	the section called “ExitWhile()” - Break a While() loop

	the section called “Gosub()” - Go to a subroutine

	the section called “GosubIf()” - Conditional Gosub()

	the section called “Goto()” - Go to another priority, and/or extension and/or context

	the section called “GotoIf()” - Conditional Goto()

	the section called “GotoIfTime()” - Time conditional Gosub()

	the section called “Random()” - Go to a random entry in the dialplan

	the section called “Return()” - Return to priority from which Gosub() and GosubIf() was called

	the section called “TryExec()” - Attempt to launch an application and get the return code

	the section called “While()” - Start a while loop

Macros
	the section called “Macro()” - Call a macro

	the section called “MacroExclusive()” - Call a macro only once at a time

	the section called “MacroExit()” - Exit from the macro

	the section called “MacroIf()” - Conditional call of a macro

Caller detection, presentation and handling
	the section called “CallingPres()” - Change the caller presentation on PRI circuits

	the section called “LookupBlacklist()” - Look up the caller ID in the blacklist

	the section called “LookupCIDName()” - Look up the caller ID name in the database

	the section called “PrivacyManager()” - Request that the caller enter the originating number if no caller ID is available

	the section called “SetCallerPres()” - Set the caller ID independently of the calling channel

	the section called “SoftHangup()” - Request a hangup

	the section called “Zapateller()” - Block telephone solicitations

Call detail records (CDRs)
	the section called “AppendCDRUserField()” - Append a value to the CDR 'user' field

	the section called “ForkCDR()” - Creates an additional CDR for the current call

	the section called “NoCDR()” - Disable CDR for this call

	the section called “ResetCDR()” - Resets the current CDR

	the section called “SetAMAFlags()” - Set AMA flags

	the section called “SetCDRUserField()” - Sets the CDR 'user' field

Voicemail
	the section called “Directory()” - Provide the "Dial-by-Name" directory

	the section called “mailboxExists()” - Checks if the mailbox exists

	the section called “VoiceMail()” - Voicemail engine

	the section called “VoiceMailMain()” - Voicemail retrieval engine

	the section called “VMAuthenticate()” - Authenticates the user using user information contained in voicemail.conf

Conferences
	the section called “MeetMe()” - MeetMe conference

	the section called “MeetMeAdmin()” - Administer a MeetMe conference

	the section called “MeetMeCount()” - Provides a count of the participants in a MeetMe conference

Variable handling
	the section called “ImportVar()” - Import a variable from a channel

	the section called “Read()” - Read digits from a user into a variable

	the section called “ReadFile()” - Read a file into a variable

	the section called “RealTime()” - Read a value from the realtime system into a variable

	the section called “RealTimeUpdate()” - Change a variable in the realtime system

	the section called “Set()” - Set a channel variable

	the section called “SetGlobalVar()” - Set a global variable

Sound files & Music-on-Hold
	the section called “Background()” - Play a sound file while proceeding to the next priority

	the section called “BackgroundDetect()” - Background() with sound detection

	the section called “ControlPlayback()” - Playback() with user playback controls

	the section called “DateTime()” - Say the date and time

	the section called “Echo()” - Echo received sound to the user

	the section called “Festival()” - Read text as speech using the Festival Text-To-Speech engine

	the section called “Milliwatt()” - Provide a constant 1004 Hz tone at 0 db

	the section called “MP3Player()” - Play an mp3 file or stream

	the section called “MusicOnHold()” - Play music-on-hold

	the section called “NBScat()” - Play an NBS stream

	the section called “Playback()” - Play a sound file

	the section called “Playtones()” - Play a tone

	the section called “Progress()” - Provide the calling channel with in-band progress sounds

	the section called “SayAlpha()” - Spell out an alphanumeric string

	the section called “SayDigits()” - Say digits

	the section called “SayNumber()” - Say a number

	the section called “SayPhonetic()” - Spell out a string using the phonetic alphabet

	the section called “SayUnixTime()” - Say the Unix time

	the section called “SetMusicOnHold()” - Set the Music-on-Hold class

	the section called “StopPlaytones()” - Stops Playtones()

Recording and Monitoring
	the section called “AgentMonitorOutgoing()” - Record the outgoing calls of a call agent

	the section called “ChangeMonitor()” - Changes the filename prefix of a specific channel for Monitor()

	the section called “ChanSpy()” - Eavesdrop on an active channel

	the section called “Dial()” - Record a conversation (when used with option w or W)

	the section called “Dictate()” - A virtual dictation machine

	the section called “ExtenSpy()” - Eavesdrop on an active channel, and whisper to the originating caller

	the section called “MixMonitor()” - Like Monitor() but mixes both legs into a single file

	the section called “Monitor()” - Records each leg (incoming and outgoing) of a call in separate files

	the section called “PauseMonitor()” - Pauses recording

	the section called “Record()” - Records only incoming audio

	the section called “StopMonitor()” - Stop recording with Monitor()

	the section called “UnpauseMonitor()” - Resumes recording

	the section called “ZapBarge()” - Eavesdrop on a ZAP channel

	the section called “ZapScan()” - Eavesdrop on Zap channels and switch easily between them

Database operations
	the section called “DBdel()” - Erase a record from the database

	the section called “DBdeltree()” - Erase a branch from the database

General
	the section called “Authenticate()” - Authenticate a user

	the section called “SendDTMF()” - Send DTMF tones

	the section called “SendImage()” - Send an image

	the section called “SendText()” - Send text

	the section called “SendURL()” - Send a URL

	the section called “Transfer()” - Transfer a call

	the section called “VMAuthenticate()” - Authenticate a user configured in voicemail.conf

	the section called “Wait()” - Wait for a specified time

	the section called “WaitExten()” - Wait for the user to dial an extension for specified time

	the section called “WaitForRing()” - Wait for ring

	the section called “WaitForSilence()” - Wait for silence

	the section called “WaitMusicOnHold()” - Wait while providing music-on-hold to caller

External applications
	the section called “AGI()” - Execute an AGI script

	the section called “DeadAGI()” - AGI() on an inactive channel

	the section called “DumpChan()” - Dump information about a channel to the CLI

	the section called “EAGI()” - See AGI()

	the section called “ExternalIVR()” - Call an external IVR generator

	the section called “FastAGI()” - AGI() on another server

	the section called “Log()” - Log a message at the specified verbosity level

	the section called “Macro()” - Execute a macro

	the section called “NoOp()” - No operation; write debugging information to the CLI

	the section called “Perl()” - res_perl is like mod_perl for Apache, only for Asterisk

	the section called “PHP()” - res_php is like mod_php for Apache, only for Asterisk

	the section called “Read()” - Read digits from a user into a variable

	the section called “System()” - Execute a shell command

	the section called “TrySystem()” - Like System(), but always returns 0

	the section called “UserEvent()” - Send an event to the Manager interface

	the section called “Verbose()” - Send a message to the CLI at the specified verbosity level

SIP
	the section called “SIPdtmfMode()” - Change the SIP DTMF mode for a SIP originated call

	the section called “SIPAddHeader()” - Add a SIP header for an outgoing call

ZAP
	the section called “Flash()” - Send a flash-hook on a ZAP trunk

	the section called “ZapBarge()” - Eavesdrop on a ZAP channel

	the section called “ZapRAS()” - Enable RAS (Remote Access Server) on a ZAP ISDN channel

	the section called “ZapScan()” - Eavesdrop on Zap channels and switch easily between them

Queues and call center functions
	the section called “AddQueueMember()” - Dynamically add an interface to a queue

	the section called “AgentCallbackLogin()” - Log-in a queue agent (with call back)

	the section called “AgentLogin()” - Log-in a queue agent

	the section called “AgentMonitorOutgoing()” - Record outgoing call of an agent

	the section called “ParkAndAnnounce()” - Park a call and announce it

	the section called “ParkedCall()” - Pick up a parked call

	the section called “PauseQueueMember()” - Pause a queue member

	the section called “Queue()” - Send a call to the queue

	the section called “QueueLog()” - Write a message to the queue log

	the section called “RemoveQueueMember()” - Remove an interface from the queue

	the section called “UnpauseQueueMember()” - Resume a paused queue member

ADSI
	the section called “ADSIProg()” - Load an ADSI script into an ADSI telephone device

	the section called “GetCPEID()” - Request the ADSI-CPE-ID from an ADSI telephone device

Miscellaneous
	the section called “AMD()” - Answering machine detection

	the section called “AlarmReceiver()” - Receive and process alarm system events in Contact-ID format from an Ademco alarm panel

	the section called “IAX2Provision()” - Provision an IAXy device

	the section called “Morsecode()” - Send text as Morse code

	the section called “SetTransferCapability()” - Set ISDN transfer capability

	the section called “SMS()” - Send or receive SMS messages

AddQueueMember()

Dynamically adds an interface into the queue.

 AddQueueMember(queue[,interface[,penalty[|,options]]])
Dynamically adds the specified interface to the specified queue, which is configured in queues.conf. The penalty setting, if provided, will influence the priority assigned to the interface in the queue. Agents with lower penalty values will receive calls before agents with higher penalty values.

If the specified interface is already in the queue and the n+101 priority exists (where n is the current priority), the call jumps to that priority; otherwise an error code (-1) is returned. (Depending on the version of Asterisk, you may need to provide the j option to enable priority jumping.)

If AddQueueMember() is called without the interface parameter, the current user's active interface is used.

Some versions of Asterisk allow commas as an option separator.

This application sets the channel variable ${AQMSTATUS} to ADDED, MEMBERALREADY (member exists in the queue) or NOSUCHQUEUE (queue does not exist) depending on circumstance.

; add SIP/3000 to "supportqueue":

exten => 123,1,AddQueueMember(supportqueue,SIP/3000)

; add the active interface with a penalty of 2:

exten => 123,1,AddQueueMember(supportqueue,,2)

	[image: image40.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AddQueueMember' =-

[Synopsis]

Dynamically adds queue members

[Description]

 AddQueueMember(queuename[|interface[|penalty[|options]]]):

Dynamically adds interface to an existing queue.

If the interface is already in the queue and there exists an n+101 prior

ity

then it will then jump to this priority. Otherwise it will return an er

ror

The option string may contain zero or more of the following characters:

 'j' -- jump to +101 priority when appropriate.

 This application sets the following channel variable upon completion:

 AQMSTATUS The status of the attempt to add a queue member as a

 text string, one of

 ADDED | MEMBERALREADY | NOSUCHQUEUE

Example: AddQueueMember(techsupport|SIP/3000)

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Queue()”, the section called “RemoveQueueMember()”, queues.conf
ADSIProg()

Loads an ADSI script into an ADSI-capable phone.

 ADSIProg([script])
Programs an ADSI[46]phone with the provided script. If no script is provided, the default asterisk.adsi is used. The pathname for the script is relative to the default Asterisk configuration directory, which is usually /etc/asterisk/. The absolute path is also accepted.

Use GetCPEID() to obtain the CPE-ID and other information about the ADSI device.

; Program the ADSI phone with the telcordia-1.adsi script:

exten => 123,1,ADSIProg(telcordia-1.adsi)

	[image: image41.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ADSIProg' =-

[Synopsis]

Load Asterisk ADSI Scripts into phone

[Description]

 ADSIProg(script): This application programs an ADSI Phone with the giv

en

script. If nothing is specified, the default script (asterisk.adsi) is u

sed.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “GetCPEID()”, adsi.conf

[46] Analog Display Services Interface

AgentCallbackLogin()

Allows call agent login with callback.

 AgentCallbackLogin([agentid][,options[,extension@context]])
Allows an agent identified through the agentid to log into the queue. A call in the queue will cause the agent's phone to ring (this is in contrast to AgentLogin(), in which the agent's phone is off-hook and new calls are indicated by a tone).

For an incoming call for the specified agent, the specified extension (at the specified context, if provided) is called.

The option s makes the login silent; the agent login is not reported.

; logs in Agent 33 silently. Calls for this agent go to SIP/300:

exten => 123,1,AgentCallbackLogin(33,s,${CALLERID(num)})

; Assuming that the agent number is the same as the agent extension, we

can do:

exten => 123,1,AgentCallbackLogin(${CALLERID(num)},s,${CALLERID(num)})

Numerous examples are available at http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+AgentCallbackLogin.

	[image: image42.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AgentCallbackLogin' =-

[Synopsis]

Call agent callback login

[Description]

 AgentCallbackLogin([AgentNo][|[options][|[exten]@context]]):

Asks the agent to login to the system with callback.

The agent's callback extension is called (optionally with the specified

context).

The option string may contain zero or more of the following characters:

 's' -- silent login - do not announce the login ok segment agent l

ogged in/off

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “AgentLogin()”

AgentLogin()

Allows call agent login.

 AgentLogin([agentid][,options])
Logs the current caller (optionally identified through agentid) into the queue as a call agent. Once logged in, the agent can take calls with the phone off-hook; each call is preceded by a warning tone. Calls are ended by pressing the "*" key.

The option s makes the login silent;

; logs in Agent 33 silently.

exten => 123,1,AgentLogin(33,s)

	[image: image43.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AgentLogin' =-

[Synopsis]

Call agent login

[Description]

 AgentLogin([AgentNo][|options]):

Asks the agent to login to the system. Always returns -1. While

logged in, the agent can receive calls and will hear a 'beep'

when a new call comes in. The agent can dump the call by pressing

the star key.

The option string may contain zero or more of the following characters:

 's' -- silent login - do not announce the login ok segment after a

gent logged in/off

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “AgentCallbackLogin()”

AgentMonitorOutgoing()

Records the outgoing calls of an agent.

 AgentMonitorOutgoing([options])
Records all the outgoing calls of an agent.

This application attempts to determine the ID of an agent making an outgoing call by comparing the caller ID of the agent with a global variable set by the AgentCallbackLogin() application. As such, it should be used with AgentCallbackLogin(), and always in a later priority. This application uses monitoring functions in chan_agent instead of Monitor(), so call recording must be configured in agents.conf.

By default, recordings are saved in /var/spool/asterisk/monitor/. You can override this behavior with the parameter savecallsin in agents.conf.

	[image: image44.png]

	

	
	Be aware that recording of calls may be subject to freedom of information and privacy legislation in your jurisdiction. As a matter of professional practice you should know the terms under which it is lawful to record telephone calls. In most jurisdictions it is illegal to record a call without the knowledge of the participants.

If the caller ID and/or agent id for the agent cannot be determined, the call jumps to priority n+101, if it exists.

Unless the options specify otherwise, the application returns 0.

The following options may be used:

d
Forces the return of -1 in the event of error if there is no n+101 priority.

c
Changes the call detail record so that the source of the call is agent/agentid rather than the caller ID.

n
Suppresses error messages if the caller ID and/or agent ID cannot be determined. This is useful if a common context for agent and non-agent calls is desired.

; record outgoing calls of this agent and adjust the CDR accordingly

exten => 123,1,AgentMonitorOutgoing(c)

	[image: image45.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AgentMonitorOutgoing' =-

[Synopsis]

Record agent's outgoing call

[Description]

 AgentMonitorOutgoing([options]):

Tries to figure out the id of the agent who is placing outgoing call bas

ed on

comparison of the callerid of the current interface and the global varia

ble

placed by the AgentCallbackLogin application. That's why it should be us

ed only

with the AgentCallbackLogin app. Uses the monitoring functions in chan_a

gent

instead of Monitor application. That have to be configured in the agents

.conf file.

Return value:

Normally the app returns 0 unless the options are passed. Also if the ca

llerid or

the agentid are not specified it'll look for n+101 priority.

Options:

 'd' - make the app return -1 if there is an error condition and there i

s

 no extension n+101

 'c' - change the CDR so that the source of the call is 'Agent/agent_id'

 'n' - don't generate the warnings when there is no callerid or the

 agentid is not known.

 It's handy if you want to have one context for agent and no

n-agent calls.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “AgentCallbackLogin()”, agents.conf, the section called “Monitor()”, the section called “ChanSpy()”
AGI()

Runs an AGI compliant application.

 AGI(program[,arguments])
(Similar to EAGI(), FastAGI(), DeadAGI())

Runs an Asterisk Gateway Interface compliant program called program on the current channel. AGI scripts or programs can be implemented in almost any conceivable language (e.g. Perl, PHP) and may be used to manipulate the channel, play sound files, interpret DTMF tones, and so on. Asterisk communicates with the AGI program over stdin and stdout. The arguments are passed directly to the AGI program at execution time.

The AGI program must be flagged as executable in the filesystem. The path is relative to the Asterisk AGI directory, which is at /var/lib/asterisk/agi-bin/ by default.

To run AGI programs on inactive channels (as in the case of an h-extension, where the channel is on-hook), used DeadAGI() instead. To run AGI programs on another server in the network, use FastAGI().

Should your AGI program need access to the incoming audio stream, use EAGI() instead of AGI(). The incoming audio stream is provided on file descriptor 3[47]
Returns -1 on hang-up or if the program requests a hang-up; returns 0 if not.

; call my AGI application:

exten => 123,1,AGI(agi-app)

exten => 123,n,EAGI(eagi-app)

	[image: image46.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AGI' =-

[Synopsis]

Executes an AGI compliant application

[Description]

 [E|Dead]AGI(command|args): Executes an Asterisk Gateway Interface comp

liant

program on a channel. AGI allows Asterisk to launch external programs

written in any language to control a telephony channel, play audio,

read DTMF digits, etc. by communicating with the AGI protocol on stdin

and stdout.

 This channel will stop dialplan execution on hangup inside of this

application, except when using DeadAGI. Otherwise, dialplan execution

will continue normally.

 A locally executed AGI script will receive SIGHUP on hangup from the c

hannel

except when using DeadAGI. This can be disabled by setting the AGISIGHUP

 channel

variable to "no" before executing the AGI application.

 Using 'EAGI' provides enhanced AGI, with incoming audio available out

of band

on file descriptor 3

 Use the CLI command 'agi show' to list available agi commands

 This application sets the following channel variable upon completion:

 AGISTATUS The status of the attempt to the run the AGI script

 text string, one of SUCCESS | FAILED | HANGUP

diff output to internal help in Asterisk 1.2:

13,19c13,15

< This channel will stop dialplan execution on hangup inside of this

< application, except when using DeadAGI. Otherwise, dialplan execution

< will continue normally.

< A locally executed AGI script will receive SIGHUP on hangup from the

 channel

< except when using DeadAGI. This can be disabled by setting the AGISIGH

UP channel

< variable to "no" before executing the AGI application.

< Using 'EAGI' provides enhanced AGI, with incoming audio available ou

t of band

> Returns -1 on hangup (except for DeadAGI) or if application requested

> hangup, or 0 on non-hangup exit.

> Using 'EAGI' provides enhanced AGI, with incoming audio available out

of band

22,25c18

< Use the CLI command 'agi show' to list available agi commands

< This application sets the following channel variable upon completion

:

< AGISTATUS The status of the attempt to the run the AGI scrip

t

< text string, one of SUCCESS | FAILED | HANGUP

> Use the CLI command 'show agi' to list available agi commands

See also. the section called “DeadAGI()”, the section called “FastAGI()”

[47] a reminder: 0: stdin, 1: stdout, 2:stderr. File descriptor 3 is freely assignable.

AlarmReceiver()

Receives alarm reports from a burglar or fire alarm panel.

 AlarmReceiver()
Emulates an alarm receiver and allows Asterisk to receive and process alarm reports in proprietary alarm panel signalling formats from burglar and fire alarm panels. Only Ademco Contact ID formatted alarm reports are supported at this time.

Once AlarmReceiver() is called, Asterisk performs a handshake with the connected alarm panel, waits for it to transmit events, then validates and stores them. When the panel has hung up, AlarmReceiver() runs the system command specified in the eventcmd of alarmreceiver.conf. The alarmreceiver.conf also contains DTMF timing settings and acknowledgement tone volume.

This application has not been certified for use in critical environments where it is the only means of polling alarm events. Use it at your own risk! Before implementing, be sure to test it thoroughly.

Always returns 0.

; Process alarm events:

exten => s,1,AlarmReceiver()

	[image: image47.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AlarmReceiver' =-

[Synopsis]

Provide support for receiving alarm reports from a burglar or fire alarm

 panel

[Description]

 AlarmReceiver(): Only 1 signalling format is supported at this time: A

demco

Contact ID. This application should be called whenever there is an alarm

panel calling in to dump its events. The application will handshake with

 the

alarm panel, and receive events, validate them, handshake them, and stor

e them

until the panel hangs up. Once the panel hangs up, the application will

run the

system command specified by the eventcmd setting in alarmreceiver.conf a

nd pipe

the events to the standard input of the application. The configuration f

ile also

contains settings for DTMF timing, and for the loudness of the acknowled

gement

tones.

diff output to internal help in Asterisk 1.2:

5c5

< Provide support for receiving alarm reports from a burglar or fire ala

rm panel

> Provide support for receving alarm reports from a burglar or fire alar

m panel

See also. alarmreceiver.conf

AMD()

Answering machine detection. Attempts to detect an answering machine at the remote end of a call.

 AMD([initialSilence[,greeting[,afterGreetingSilence[,totalAnalysisTime[,minWordLength[,betweenWordsSilence[,maxNumberOfWords[,silenceThreshold]]]]]]]])
If a call is initiated through a .call file, you can use AMD() to sense an answering machine at the remote end. Defaults are set in amd.conf.

initialSilence
Maximum duration of silence preceding the remote announcement. If this is exceeded, sets ${AMDSTATUS} to MACHINE.

greeting
Maximum duration of an announcement. If this is exceeded, sets ${AMDSTATUS} to MACHINE.

afterGreetingSilence
Maximum duration of silence following the remote announcement. If this is exceeded, sets ${AMDSTATUS} to HUMAN.

totalAnalysisTime
Maximum duration AMD() is allowed to determine whether remote end is HUMAN or MACHINE.

minWordsSilence
Minimum allowed duration of a sound for it to be considered a word.

betweenWordsSilence
Minimum allowed duration of silence between words.

maxNumberOfWords
Maximum number of words in the announcement. If this is exceeded, sets ${AMDSTATUS} to MACHINE.

silenceThreshold
The silence threshold.

This application delivers its output in the channel variables AMDSTATUS and AMDCAUSE.

AMDSTATUS can be assigned the following values:

· MACHINE

The remote end is a machine.

· HUMAN

The remote end is a human.

· NOTSURE

Threshold cases are indicated with NOTSURE.

· HANGUP

The remote end has hung up.

AMDCAUSE can be assigned the following values:

· TOOLONG- <%d total_time>
· INITIALSILENCE- <%d silenceDuration> - <%d initialSilence>
· HUMAN- <%d silenceDuration> - <%d afterGreetingSilence>
· MAXWORDS- <%d wordsCount> - <%d maximumNumberOfWords>
· LONGGREETING- <%d voiceDuration> - <%d greeting>
; This extension is called through a .call file:

exten => 10,1,AMD()

exten => 10,n,Goto(Status-${AMDSTATUS})

exten => 10,n(Status-HUMAN),Playback(message)

exten => 10,n,Hangup()

exten => 10,n(Status-MACHINE),Hangup()

exten => 10,n(Status-NOTSURE),Hangup()

exten => 10,n(Status-HANGUP),Hangup()

	[image: image48.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AMD' =-

[Synopsis]

Attempts to detect answering machines

[Description]

 AMD([initialSilence][|greeting][|afterGreetingSilence][|totalAnalysisT

ime]

 [|minimumWordLength][|betweenWordsSilence][|maximumNumberOfWords]

 [|silenceThreshold])

 This application attempts to detect answering machines at the beginnin

g

 of outbound calls. Simply call this application after the call

 has been answered (outbound only, of course).

 When loaded, AMD reads amd.conf and uses the parameters specified as

 default values. Those default values get overwritten when calling AMD

 with parameters.

- 'initialSilence' is the maximum silence duration before the greeting.

If

 exceeded then MACHINE.

- 'greeting' is the maximum length of a greeting. If exceeded then MACHI

NE.

- 'afterGreetingSilence' is the silence after detecting a greeting.

 If exceeded then HUMAN.

- 'totalAnalysisTime' is the maximum time allowed for the algorithm to d

ecide

 on a HUMAN or MACHINE.

- 'minimumWordLength'is the minimum duration of Voice to considered as a

 word.

- 'betweenWordsSilence' is the minimum duration of silence after a word

to

 consider the audio that follows as a new word.

- 'maximumNumberOfWords'is the maximum number of words in the greeting.

 If exceeded then MACHINE.

- 'silenceThreshold' is the silence threshold.

This application sets the following channel variable upon completion:

 AMDSTATUS - This is the status of the answering machine detection.

 Possible values are:

 MACHINE | HUMAN | NOTSURE | HANGUP

 AMDCAUSE - Indicates the cause that led to the conclusion.

 Possible values are:

 TOOLONG-<%d total_time>

 INITIALSILENCE-<%d silenceDuration>-<%d initialSilence>

 HUMAN-<%d silenceDuration>-<%d afterGreetingSilence>

 MAXWORDS-<%d wordsCount>-<%d maximumNumberOfWords>

 LONGGREETING-<%d voiceDuration>-<%d greeting>

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “Call Files”

Answer()

Answers a ringing channel.

 Answer([delay])
Instructs Asterisk to answer the channel if it is ringing. If the channel is not ringing, this application has no effect.

It is generally recommended that the channel be answered before other applications are called, unless there is a specific reason for not doing so. Most applications require that the channel be answered before they are run; if this is not done, the behavior may be unexpected.

The optional delay parameter specifies how long Asterisk should wait, in milliseconds, before answering the channel.

Returns 0 upon success.

exten => 123,1,Answer()

exten => 123,n,Wait(1)

exten => 123,n,Playback(hello)

exten => 123,n,Hangup()

	[image: image49.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Answer' =-

[Synopsis]

Answer a channel if ringing

[Description]

 Answer([delay]): If the call has not been answered, this application w

ill

answer it. Otherwise, it has no effect on the call. If a delay is specif

ied,

Asterisk will wait this number of milliseconds before answering the call

.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Hangup()”

AppendCDRUserField()

Appends a string to the user field in the CDR.

 AppendCDRUserField(string)
Hängt den übergebenen String an das CDR-User-Feld an.

	[image: image50.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'AppendCDRUserField' =-

[Synopsis]

Append to the CDR user field

[Description]

[Synopsis]

AppendCDRUserField(value)

[Description]

AppendCDRUserField(value): Append value to the CDR user field

 The Call Data Record (CDR) user field is an extra field you

 can use for data not stored anywhere else in the record.

 CDR records can be used for billing or storing other arbitrary da

ta

 (I.E. telephone survey responses)

 Also see SetCDRUserField().

diff output to internal help in Asterisk 1.2:

- none -

	[image: image51.png]

	

	
	Though it is not mentioned in the internal help, this application is deprecated. The source code gives a hint:

ast_log(LOG_WARNING, "AppendCDRUserField is deprecated. Please use CDR(

userfield) instead.\n");

Use the CDR(userfield) function instead.

See also. the section called “CDR()”

Authenticate()

Requires that the caller enter a password before proceeding to the next priority.

 Authenticate(password[,options[,maxDigits]])
Requires that the caller enters the specified password correctly before proceeding to the next priority. Allows three the caller three chances to enter the password correctly before hanging up.

If password begins with "/" (forward-slash), Asterisk will assume it is a filename to a file containing a list of valid passwords (exactly one per line). Passwords may also be stored in the Asterisk database (AstDB); see option d below.

The following options are allowed (also in combination):

a
(accountcode) Sets the CDR accountcode field and the channel variable ACCOUNTCODE to the entered password.

d
(database) Interprets the entered password as a key in the Asterisk database. If a database key is used, the value in the associated record is ignored and can be arbitrary.

r
(remove) Removes the database key after successful password entry (valid only with option d).

j
(jump) In the event of three failed attempts, jump to priority n+101 (if it exists) instead of hanging up.

	[image: image52.png]

	

	
	When using option d, note that Asterisk looks for a key with a name equivalent to the password: as in /passwords/1234. The value in the record itself is irrelevant. A more logical implementation would be to place the password as a value in the record, as in /passwords/type => 1234.

If maxDigits is set, input is ended as soon as the user has entered enough digits; this saves having to enter "#". (Default: 0; no limits on input).

Returns 0 if the user enters the correct password within three attempts, otherwise hangs up the channel and returns -1.

; Passwort 1234 verlangen:

exten => 123,1,Answer()

exten => 123,2,Authenticate(1234,j,4) ; an exceptional use of

priority jumping because we want to tell the caller

 ; that she has entered t

he wrong password

exten => 123,3,Playback(pin-nummer-akzeptiert)

exten => 123,103,Playback(pin-nummer-falsch)

	[image: image53.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Authenticate' =-

[Synopsis]

Authenticate a user

[Description]

 Authenticate(password[|options[|maxdigits]]): This application asks th

e caller

to enter a given password in order to continue dialplan execution. If th

e password

begins with the '/' character, it is interpreted as a file which contain

s a list of

valid passwords, listed 1 password per line in the file.

 When using a database key, the value associated with the key can be an

ything.

Users have three attempts to authenticate before the channel is hung up.

 If the

passsword is invalid, the 'j' option is specified, and priority n+101 ex

ists,

dialplan execution will continnue at this location.

 Options:

 a - Set the channels' account code to the password that is entered

 d - Interpret the given path as database key, not a literal file

 j - Support jumping to n+101 if authentication fails

 m - Interpret the given path as a file which contains a list of acc

ount

 codes and password hashes delimited with ':', listed one per li

ne in

 the file. When one of the passwords is matched, the channel wil

l have

 its account code set to the corresponding account code in the f

ile.

 r - Remove the database key upon successful entry (valid with 'd' o

nly)

 maxdigits - maximum acceptable number of digits. Stops reading aft

er

 maxdigits have been entered (without requiring the user to

 press the '#' key).

 Defaults to 0 - no limit - wait for the user press the '#' key.

diff output to internal help in Asterisk 1.2:

8,10c8,10

< Authenticate(password[|options[|maxdigits]]): This application asks

the caller

< to enter a given password in order to continue dialplan execution. If

the password

< begins with the '/' character, it is interpreted as a file which conta

ins a list of

> Authenticate(password[|options]): This application asks the caller t

o enter a

> given password in order to continue dialplan execution. If the passwor

d begins

> with the '/' character, it is interpreted as a file which contains a l

ist of

25,28d24

< maxdigits - maximum acceptable number of digits. Stops reading a

fter

< maxdigits have been entered (without requiring the user to

< press the '#' key).

< Defaults to 0 - no limit - wait for the user press the '#' ke

y.

See also. the section called “VMAuthenticate()”

Background()

Plays a sound file while listening for DTMF input from the caller.

 Background(soundfile1[&soundfile2...][,options[,language]])
Plays the specified sound files while waiting for the caller to dial an extension. Playback stops the moment the first digit is pressed. Filenames must be provided without file extensions; Asterisk chooses the file format with the minimum transcoding cost.

Allowed options may not be combined:

skip
Playback is skipped if the channel is not in the up state when the application is run. If skip is specified, the application ends immediately when the channel is hung up.

noanswer
The channel is only answered after the specified sound file has been played. The default behavior is to answer the channel automatically before playing the sound file. Note that not all channel types allow playback of a message before being answered.

The language parameter can be used to specify a language for the sound file(s) played, in the event this should be different than the language currently specified for the channel.

Returns -1 if hung up or if the specified sound file does not exist, otherwise returns 0.

exten => 123,1,Answer()

exten => 123,n,Background(please-enter-extension)

	[image: image54.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'BackGround' =-

[Synopsis]

Play an audio file while waiting for digits of an extension to go to.

[Description]

 Background(filename1[&filename2...][|options[|langoverride][|context]]

):

This application will play the given list of files while waiting for an

extension to be dialed by the calling channel. To continue waiting for d

igits

after this application has finished playing files, the WaitExten applica

tion

should be used. The 'langoverride' option explicitly specifies which lan

guage

to attempt to use for the requested sound files. If a 'context' is speci

fied,

this is the dialplan context that this application will use when exiting

 to a

dialed extension. If one of the requested sound files does not exist, c

all processing will be

terminated.

 Options:

 s - Causes the playback of the message to be skipped

 if the channel is not in the 'up' state (i.e. it

 hasn't been answered yet). If this happens, the

 application will return immediately.

 n - Don't answer the channel before playing the files.

 m - Only break if a digit hit matches a one digit

 extension in the destination context.

diff output to internal help in Asterisk 1.2:

5c5

< Play an audio file while waiting for digits of an extension to go to.

> Play a file while awaiting extension

12c12

< should be used. The 'langoverride' option explicitly specifies which l

anguage

> should be used. The 'langoverride' option explicity specifies which la

nguage

18c18

< s - Causes the playback of the message to be skipped

> s - causes the playback of the message to be skipped

20c20

< hasn't been answered yet). If this happens, the

> hasn't been answered yet.) If this happens, the

22,24c22,24

< n - Don't answer the channel before playing the files.

< m - Only break if a digit hit matches a one digit

< extension in the destination context.

> n - don't answer the channel before playing the files

> m - only break if a digit hit matches a one digit

> extension in the destination context

See also. the section called “Playback()”, the section called “BackgroundDetect()”, CLI-Befehl show translation
BackgroundDetect()

Plays a sound file while listening for sound from the caller.

 BackgroundDetect(soundfile[,silence[,min[,max]]])
Similar to Background(), but listens for sound also.

During playback of the sound file, the application monitors audio on the incoming audio channel. If it detects a sound longer than min milliseconds in duration but shorter than max milliseconds, followed by a period of silence of at least silence milliseconds, it stops playback and passes the call to the talk extension, if it exists.

If silence, min and max are not specified, the defaults are used: 1000 ms, 100 ms and unlimited, respectively.

Returns -1 on hangup, otherwise returns 0 (such as when playback is interrupted due to input).

exten => 123,1,BackgroundDetect(symphony)

exten => 123,n,Playback(vm-sorry)

exten => talk,1,Playback(yes-please)

	[image: image55.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'BackgroundDetect' =-

[Synopsis]

Background a file with talk detect

[Description]

 BackgroundDetect(filename[|sil[|min|[max]]]): Plays back a given

filename, waiting for interruption from a given digit (the digit must

start the beginning of a valid extension, or it will be ignored).

During the playback of the file, audio is monitored in the receive

direction, and if a period of non-silence which is greater than 'min' ms

yet less than 'max' ms is followed by silence for at least 'sil' ms then

the audio playback is aborted and processing jumps to the 'talk' extensi

on

if available. If unspecified, sil, min, and max default to 1000, 100, a

nd

infinity respectively.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Playback()”, the section called “Background()”
Busy()

Sets the channel as "busy".

 Busy([timeout])
Instructs the channel to indicate busy and waits until the caller hangs up or the timeout expires (timeout, in seconds).

This application indicates a busy state only on the bridged channel. Every channel type has its own way of indicating that a device is busy. To play an actual busy tone, use Playtones(busy).

Always returns -1.

exten => 123,1,Playback(vm-sorry)

exten => 123,n,Playtones(busy)

exten => 123,n,Busy()

	[image: image56.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Busy' =-

[Synopsis]

Indicate the Busy condition

[Description]

 Busy([timeout]): This application will indicate the busy condition to

the calling channel. If the optional timeout is specified, the calling c

hannel

will be hung up after the specified number of seconds. Otherwise, this

application will wait until the calling channel hangs up.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Congestion()”, the section called “Progress()”, the section called “Playtones()”
CallingPres()

Changes the caller ID on an ISDN-PRI channel.

 CallingPres(presentation)
Changes the presentation parameter in the caller ID for calls using Q.931 PRI connections. These parameters should be set before the call is initiated. The presentation parameter presentation defines first whether the called party will be sent caller ID information in the first place, and second, whether it was verified against a reliable source (screening).

This application has been superceded by SetCallerPres(), which is easier to use and less dependent on Zaptel.

This application generates a number based on the presentation and screening settings. The meaning of the values themselves is defined in the ITU Q.931-Standard as described in the following tables.

Screening is set by bits 1 and 2:

	Bit1
	Bit2
	Description

	0
	0
	The caller ID information was provided by the endpoint and no verification was attempted.

	0
	1
	The caller ID information was provided by the endpoint and was successfully verified.

	1
	0
	The caller ID information was provided by the endpoint but verification was unsuccessful.

	1
	1
	The caller ID information was provided by the network.

Presentation is set by bits 6 and 7:

	Bit6
	Bit7
	Description

	0
	0
	Display of caller ID is allowed.

	0
	1
	Display of caller ID is not allowed.

	1
	0
	The number is not available because it was not passed by an intermediate station.

	1
	1
	Reserved

The bits 3, 4, 5 and 8 should be zero (0). Note that the bits are numbered in descending order, i.e. 87654321.

; set presentation to:

; presentation allowed

 (00000000)

; provided by the network

 (00000011)

; ------------------

; Result: 3 (bitwise AND)

 (00000011)

exten => 123,1,CallingPres(3)

exten => 123,2,Dial(Zap/g1/1234567)

; set presentation to:

; presentation restricted, blocked by intermediate station

 (00100000)

; user provided ID, verified

 (00000001)

; ------------------

; Ergebnis: 33 (bitwise AND) (00100001)

exten => 124,1,CallingPres(33)

exten => 124,2,Dial(Zap/g1/1234568)

See also. the section called “SetCallerPres()”

ChangeMonitor()

Changes the monitoring filename of a channel.

 ChangeMonitor(filename-prefix)
Changes the filename prefix for sound files written while recording the channel with Monitor(). This application has no effect if the affected channel is not being monitored.

; Monitor channel with a filename prefix of 'audioclip'

exten => 123,1,Monitor(audioclip)

; Change filename prefix to 'audioclip2'

exten => 123,n,ChangeMonitor(audioclip2)

	[image: image57.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ChangeMonitor' =-

[Synopsis]

Change monitoring filename of a channel

[Description]

ChangeMonitor(filename_base)

Changes monitoring filename of a channel. Has no effect if the channel i

s not monitored

The argument is the new filename base to use for monitoring this channel

.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Monitor()”, the section called “StopMonitor()”
ChanIsAvail()

Indicates whether the specified channel is available.

 ChanIsAvail(technology1/resource1[&technology2/resource2...][,options])
Verifies that the one or more of the queried channels is available, in the order specified. Returns 0 on success or -1 on failure.

If the s (state) option is given, Asterisk will treat the channel as unavailable if it is in use, even if it is capable of taking another call. Option j sets priority jumping to n+101 if the channel is unavailable.

	[image: image58.png]

	

	
	The mere fact of a channel being available does not automatically mean that it is free for use or that the device on the channel will accept a call. That is determined using a Dial() to the channel.

ChanIsAvail() sets the following channel variables:

${AVAILCHAN}
The name of the accessible channel, including the session number of the call.

${AVAILORIGCHAN}
The canonical channel name (i.e., the channel name without session number).

${AVAILSTATUS}
Status code of the channel:

AST_DEVICE_UNKNOWN (0)

Status of the channel is unknown. It is a valid channel, but we don't know about its state.

AST_DEVICE_NOT_INUSE (1)

The channel is not in use.

AST_DEVICE_IN_USE (2)

The channel is in use.

AST_DEVICE_BUSY (3)

The channel is busy.

AST_DEVICE_INVALID (4)

The channel is unknown.

AST_DEVICE_UNAVAILABLE (5)

The channel is not available and not registered.

AST_DEVICE_RINGING (6)

The channel is ringing.

	[image: image59.png]

	

	
	This application does not behave as expected on MGCP channels.

; Check the availability of Zap/1 and Zap/2:

exten => 123,1,ChanIsAvail(Zap/1&Zap/2,j)

; As an exception, using priority jumping, because we want to announce

; something to the caller if no channel is available

; at least one channel is available - dial this channel:

exten => 123,2,NoOp(${AVAILORIGCHAN} is available)

exten => 123,3,Dial(${AVAILORIGCHAN}/123456)

; if the call goes to priority 102 landen, neither Zap/1 nor Zap/2 is av

ailable

exten => 123,102,Playback(all-channels-busy)

	[image: image60.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ChanIsAvail' =-

[Synopsis]

Check channel availability

[Description]

 ChanIsAvail(Technology/resource[&Technology2/resource2...][|options]):

This application will check to see if any of the specified channels are

available. The following variables will be set by this application:

 ${AVAILCHAN} - the name of the available channel, if one exists

 ${AVAILORIGCHAN} - the canonical channel name that was used to create

the channel

 ${AVAILSTATUS} - the status code for the available channel

 Options:

 s - Consider the channel unavailable if the channel is in use at all

 j - Support jumping to priority n+101 if no channel is available

diff output to internal help in Asterisk 1.2:

- none -

ChannelRedirect()

Redirects a channel to another extension and priority.

 ChannelRedirect(channel,[context,]extension,priority)
Redirects the specified channel to another extension and priority.

Channel
Name of the channel to be redirected.

Context
Context to which the channel should be redirected.

Extension
Extension to which the channel should be redirected.

priority
Priority in the new extension.

	[image: image61.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ChannelRedirect' =-

[Synopsis]

Redirects given channel to a dialplan target.

[Description]

ChannelRedirect(channel|[[context|]extension|]priority):

 Sends the specified channel to the specified extension priority

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “Goto()”, the section called “Transfer()”
ChanSpy()

Enables eavesdropping on a channel.

 ChanSpy([channelprefix[,options]])
Allows eavesdropping on a conversation on any specified channel (this is different from ZapBarge()/ZapScan() which are bound to Zap channels only). Note that this application only listens on single channels, rather than the conversation per se, even though it does capture incoming and outgoing audio on the channel.

	[image: image62.png]

	

	
	Be aware that listening to calls may be subject to freedom of information and privacy legislation in your jurisdiction. As a matter of professional practice you should know the terms under which it is lawful to eavesdrop on telephone calls. In most jurisdictions it is illegal to eavesdrop on a call without the knowledge of the participants.

If channelprefix is specified, only channels with a name beginning with that string are available for listening.

Options may be combined:

b
(bridged) Restrict to bridged (i.e. connected) channels.

g(grp)
(group) Restrict to channels whose ${SPYGROUP} channel variable contains the value grp in a ":" (colon) delimited list.

q

(quiet) Do not play beep tones (nor announce the channel name) when switching channels.

r([name])
(record) Record the spying session in a file in the /var/spool/asterisk/monitor/ directory. The default filename prefix is chanspy.

v[(value)]
(volume) Set the initial volume. The range of allowed values is from -4 (quiet) bis 4 (loud).

w
(whisper) Activate whisper mode. Allows the user on the spying channel to speak to the channel user on the spied-on channel, without the remote user hearing. (This option is available as of Asterisk 1.4.)

W
(private whisper) Private whisper mode. Like w, except that the spying channel cannot hear the spied-on channel (it's not immediately clear where this would be useful, but Asterisk has found myriad applications!)

While listening, the following keypad input is accepted:

Increases volume stepwise (from -4 to 4)

*
Switches to another channel

X..X#
A set of digits of arbitrary length, ended with #, is attached to channelprefix. For example, if the extension invokes ChanSpy(Agent) and the user on the spying channel dials 1234#, the spying channel will begin spying on the channel Agent/1234.

; Eavesdrop on an agent:

exten => 123,1,ChanSpy(Agent)

exten => 123,n,Hangup()

; Example using g:

; for calls to 0, set SPYGROUP 10005:

exten => _0.,1,Set(SPYGROUP=10005)

;...

; Listen to channels in SPYGROUP 10005:

exten => 123,1,ChanSpy(,g(10005))

exten => 123,n,Hangup()

	[image: image63.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ChanSpy' =-

[Synopsis]

Listen to a channel, and optionally whisper into it

[Description]

 ChanSpy([chanprefix][|options]): This application is used to listen to

 the

audio from an Asterisk channel. This includes the audio coming in and

out of the channel being spied on. If the 'chanprefix' parameter is spec

ified,

only channels beginning with this string will be spied upon.

 While spying, the following actions may be performed:

 - Dialing # cycles the volume level.

 - Dialing * will stop spying and look for another channel to spy on.

 - Dialing a series of digits followed by # builds a channel name to

append

 to 'chanprefix'. For example, executing ChanSpy(Agent) and then di

aling

 the digits '1234#' while spying will begin spying on the channel

 'Agent/1234'.

 Options:

 b - Only spy on channels involved in a bridged call.

 g(grp) - Match only channels where their ${SPYGROUP} variable

 is set to

 contain 'grp' in an optional : delimited list.

 q - Don't play a beep when beginning to spy on a channel

, or speak the

 selected channel name.

 r[(basename)] - Record the session to the monitor spool directory. A

n

 optional base for the filename may be specified. The

 default is 'chanspy'.

 v([value]) - Adjust the initial volume in the range from -4 to 4.

 A

 negative value refers to a quieter setting.

 w - Enable 'whisper' mode, so the spying channel can tal

k to

 the spied-on channel.

 W - Enable 'private whisper' mode, so the spying channel

 can

 talk to the spied-on channel but cannot listen to th

at

 channel.

diff output to internal help in Asterisk 1.2:

5c5,6

< Listen to a channel, and optionally whisper into it

> Listen to the audio of an active channel

>

9c10

< audio from an Asterisk channel. This includes the audio coming in and

> audio from an active Asterisk channel. This includes the audio coming

in and

12c13

< While spying, the following actions may be performed:

> While Spying, the following actions may be performed:

17c18

< the digits '1234#' while spying will begin spying on the channel

> the digits '1234#' while spying will begin spying on the channel

,

20,24c21,24

< b - Only spy on channels involved in a bridged call.

< g(grp) - Match only channels where their ${SPYGROUP} variab

le is set to

< contain 'grp' in an optional : delimited list.

< q - Don't play a beep when beginning to spy on a chann

el, or speak the

< selected channel name.

> b - Only spy on channels involved in a bridged call.

> g(grp) - Match only channels where their ${SPYGROUP} variable is s

et to

> 'grp'.

> q - Don't play a beep when beginning to spy on a channel.

28,34c28,29

< v([value]) - Adjust the initial volume in the range from -4 to

4. A

< negative value refers to a quieter setting.

< w - Enable 'whisper' mode, so the spying channel can t

alk to

< the spied-on channel.

< W - Enable 'private whisper' mode, so the spying chann

el can

< talk to the spied-on channel but cannot listen to

that

< channel.

> v([value]) - Adjust the initial volume in the range from -4 to 4.

A

> negative value refers to a quieter setting.

See also. the section called “ExtenSpy()”, the section called “ZapBarge()”, the section called “ZapScan()”, the section called “Monitor()”
Congestion()

Indicates congestion (insufficient resources available) on the channel.

 Congestion([timeout])
Indicates congestion on the channel and waits until the caller hangs up or until the specified timeout timeout has expired.

This application indicates congestion in the system but does not indicate this to the caller. Should you wish to notify the caller, use Playtones(congestion).

Returns -1.

; for Caller ID is 888-555-8701, always signal congestion:

exten => 123,1,GotoIf($[${CALLERID(num)} = 8885558701]?10)

exten => 123,n,Playtones(congestion)

exten => 123,n,Congestion(5)

exten => 123,n,Hangup()

exten => 123,10,Dial(Zap/1)

	[image: image64.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Congestion' =-

[Synopsis]

Indicate the Congestion condition

[Description]

 Congestion([timeout]): This application will indicate the congestion

condition to the calling channel. If the optional timeout is specified,

the

calling channel will be hung up after the specified number of seconds.

Otherwise, this application will wait until the calling channel hangs up

.

diff output to internal help in Asterisk 1.2:

8c8

< Congestion([timeout]): This application will indicate the congestion

> Congestion([timeout]): This application will indicate the congenstio

n

See also. the section called “Busy()”, the section called “Progress()”, the section called “Playtones()”
ContinueWhile()

Returns to the beginning of a while loop.

 ContinueWhile()
The ContinueWhile() application can interrupt a while loop while in progress. Asterisk returns to the beginning of the loop and evaluates the condition.

	[image: image65.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ContinueWhile' =-

[Synopsis]

Restart a While loop

[Description]

Usage: ContinueWhile()

Returns to the top of the while loop and re-evaluates the conditional.

diff output to internal help in Asterisk 1.2:

-- nicht in Version 1.2. vorhanden --

See also. the section called “While()”, the section called “ExitWhile()”, ???
ControlPlayback()

Plays a sound file with fast forward and rewind controls.

 ControlPlayback(soundfile[,skipms[,ffchar[,rewchar[,stopchar[,pausechar]]]]])
Plays the specified file; the caller can manipulate playback by pressing the defined keys ffchar and rewchar. The defaults are "#" (forward) and "*" (backward). Playback is stopped when stopchar is pressed (if it is defined). If the file does not exist, the application jumps to priority n+101, if it exists.

The pausechar option is similar in behavior to stopchar except that playback can be resumed by pressing pausechar a second time.

The skipms defines how far forward or backward ControlPlayback() will skip in the file when ffchar or rewchar is pressed.

Returns -1 if the caller hangs up during playback.

; play "symphony" to the caller with playback control:

exten => 123,1,ControlPlayback(symphony,5000,#,*,5,0)

	[image: image66.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ControlPlayback' =-

[Synopsis]

Play a file with fast forward and rewind

[Description]

 ControlPlayback(file[|skipms[|ff[|rew[|stop[|pause[|restart|options]]]

]]]]):

This application will play back the given filename. By default, the '*'

key

can be used to rewind, and the '#' key can be used to fast-forward.

Parameters:

 skipms - This is number of milliseconds to skip when rewinding or

 fast-forwarding.

 ff - Fast-forward when this DTMF digit is received.

 rew - Rewind when this DTMF digit is received.

 stop - Stop playback when this DTMF digit is received.

 pause - Pause playback when this DTMF digit is received.

 restart - Restart playback when this DTMF digit is received.

Options:

 j - Jump to priority n+101 if the requested file is not found.

This application sets the following channel variable upon completion:

 CPLAYBACKSTATUS - This variable contains the status of the attempt as

 a text

 string, one of: SUCCESS | USERSTOPPED | ERROR

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Playback()”, the section called “Background()”
DateTime()

Say the current time.

 DateTime([unixtime[,timezone[,format]]])
Says the current time. It is not yet deprecated but is now only an alias to SayUnixTime(); see the description there for use instructions.

See also. the section called “SayUnixTime()”

DBdel()

Deletes a key from the Asterisk database (AstDB).

 DBdel(family/key)
Deletes the specified key from the Asterisk database.

Returns 0.

exten => 123,1,Set(DB(test/name)=Richard) ; save key in AstDB

exten => 123,n,Set(name=${DB(test/name)}) ; retrieve key

exten => 123,n,DBdel(test/name) ; delete key

	[image: image67.png]

	

	
	DBdel() is deprecated as of Asterisk 1.4; use the DB_DELETE() function instead.

	[image: image68.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'DBdel' =-

[Synopsis]

Delete a key from the database

[Description]

 DBdel(family/key): This application will delete a key from the Asteris

k

database.

 This application has been DEPRECATED in favor of the DB_DELETE functio

n.

diff output to internal help in Asterisk 1.2:

10d9

< This application has been DEPRECATED in favor of the DB_DELETE funct

ion.

See also. the section called “DBdeltree()”, the section called “DB()”, the section called “DB_DELETE()”
DBdeltree()

Deletes a family or branch from the Asterisk database.

DBdeltree(family[/branch])

Deletes the specified branch from the Asterisk database.

Returns 0.

; save entries in AstDB:

exten => 123,1,Set(DB(colors/one)=red)

exten => 123,n,Set(DB(colors/two)=blue)

; now delete the key family named test

exten => 123,n,DBdeltree(colors)

	[image: image69.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'DBdeltree' =-

[Synopsis]

Delete a family or keytree from the database

[Description]

 DBdeltree(family[/keytree]): This application will delete a family or

keytree

from the Asterisk database

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “DBdel()”, the section called “DB()”
DeadAGI()

Runs an AGI compliant program on an inactive channel.

 DeadAGI(program,arguments)
Runs an AGI compliant program on an inactive (on hook) channel. With AGI (Asterisk Gateway Interface), you can manipulate channels with programs written in practically any conceivable language. AGI programs can control a channel, play audio, interpret and store DTMF tones; AGI programs exchange data with Asterisk on STDIN und STDOUT. The specified arguments are passed unadulterated to the AGI program.

This application was developed for use on inactive (on hook) channels, because the standard AGI interface will not work on a channel after it is hung up. It is not necessary for the channel to be "dead" at the time of execution, however!

The command show agi, entered on the CLI, will give a list of the available AGI commands.

Returns -1 if the application causes a hang-up, or returns 0 on exit without hang-up.

; run AGI on a hung-up channel:

exten => h,1,DeadAGI(agi-test)

	[image: image70.png]

	

	
	The channel will be treated as active as long as the AGI program is running. This can have implications for CDRs.

Note also that DeadAGI applications receive a SIGHUP signal when the channel is hung up, and it may need to be explicitly ignored in your AGI program:

Perl

$SIG{HUP} = "IGNORE";

PHP

pcntl_signal(SIGHUP, SIG_IGN);

(PHP must be compiled with --enable-pcntl; it is not by default!)

Ruby

trap('SIGHUP','IGNORE')

It is also important for the AGI program to stop communicating after the hang-up, or it will receive a SIGPIPE signal and end (unless the signal is explicitly ignored as in the example above).

	[image: image71.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'DeadAGI' =-

[Synopsis]

Executes AGI on a hungup channel

[Description]

 [E|Dead]AGI(command|args): Executes an Asterisk Gateway Interface comp

liant

program on a channel. AGI allows Asterisk to launch external programs

written in any language to control a telephony channel, play audio,

read DTMF digits, etc. by communicating with the AGI protocol on stdin

and stdout.

 This channel will stop dialplan execution on hangup inside of this

application, except when using DeadAGI. Otherwise, dialplan execution

will continue normally.

 A locally executed AGI script will receive SIGHUP on hangup from the c

hannel

except when using DeadAGI. This can be disabled by setting the AGISIGHUP

 channel

variable to "no" before executing the AGI application.

 Using 'EAGI' provides enhanced AGI, with incoming audio available out

of band

on file descriptor 3

 Use the CLI command 'agi show' to list available agi commands

 This application sets the following channel variable upon completion:

 AGISTATUS The status of the attempt to the run the AGI script

 text string, one of SUCCESS | FAILED | HANGUP

diff output to internal help in Asterisk 1.2:

13,19c13,15

< This channel will stop dialplan execution on hangup inside of this

< application, except when using DeadAGI. Otherwise, dialplan execution

< will continue normally.

< A locally executed AGI script will receive SIGHUP on hangup from the

 channel

< except when using DeadAGI. This can be disabled by setting the AGISIGH

UP channel

< variable to "no" before executing the AGI application.

< Using 'EAGI' provides enhanced AGI, with incoming audio available ou

t of band

> Returns -1 on hangup (except for DeadAGI) or if application requested

> hangup, or 0 on non-hangup exit.

> Using 'EAGI' provides enhanced AGI, with incoming audio available out

of band

22,25c18

< Use the CLI command 'agi show' to list available agi commands

< This application sets the following channel variable upon completion

:

< AGISTATUS The status of the attempt to the run the AGI scrip

t

< text string, one of SUCCESS | FAILED | HANGUP

> Use the CLI command 'show agi' to list available agi commands

See also. the section called “AGI()”, the section called “FastAGI()”
Dial()

Connects channels.

 Dial(technology/resource,timeout,options,URL)
 Dial(technology1/resource1[&tech2/resource2[&...]],timeout,options,URL)
 Dial(technology/user:password@host/extension,timeout,options)
Connects two channels together.[48] Dial() is perhaps the most important application in Asterisk. We recommend you read this section carefully and more than once if necessary.

Dial() accepts every valid channel type (e.g. SIP, IAX2, H.323, MGCP, Local oder Zap) but the allowable parameters are channel-specific; i.e., what parameters a channel requires or will accept depends on the nature of the channel technology. For example, a SIP channel will require an IP address and user information, whereas a ZAP channel requires a telephone number.

When a network-based channel type is specified, the parameters (such as IP address, user name, password and remote extension) can be supplied as options to Dial() or, alternatively, be included in a host configuration section in the appropriate .conf file. If this second approach is used, all the required configuration information must be present.

Here's an example:

exten => s,1,Dial(SIP/richard:secret@widgets.biz)

This extension would accomplish the same thing:

exten => s,1,Dial(SIP/a_SIP_friend)

... as long as "a_SIP_friend" is defined as a channel in sip.conf:

[a_SIP_friend]

fromuser=richard

password=secret

host=widgets.biz

Sometimes an extension is attached to the address information, as in this example:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500)

The remote system is asked to connect the call to extension 500 in the incoming channel. This extension is not required because the channel configuration on the remote system is used, or, alternatively, the call is passed to the default s extension in the incoming context.

In the end, the remote host decides how the call will be processed; all you can do is request special call handling.

If no timeout is specified, the channel will ring indefinitely. This behavior is not necessarily undesirable and so it's not automatically necessary to set this parameter. Just be aware that "indefinite" can end up being a very long time.[49] The timeout is specified in seconds. It always follows the device information:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500,20)

With Dial(), you can ring multiple channels simultaneously. The call is handled on a "first come, first served" basis; the first extension to pick up answers the call, and all the other extensions stop ringing and become available:

exten => s,1,Dial(SIP/2000&SIP/2001&SIP/2303)

A big part of the power in the Dial() application is in the options, which always follow the device and timeout information, like so:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500,60,options)

	[image: image72.png]

	

	
	If you want to provide options, you still need to provide a comma-delimited space for the timeout value even if it is empty:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500,,options)

Here are the valid options to the Dial() application:

d
Allows the caller to dial another single-digit extension while waiting for the current extension to answer (e.g., a caller dials "4" while the phone is ringing and the call is immediately passed to the 4 extension. The extension is in the current context unless ${EXITCONTEXT} is set).

t
Blind transfer initiated by the called party. Allows the called party to transfer the call by pressing the blind transfer key (normally "#"). Reinvites are not possible when this option is selected because Asterisk must monitor the connection to detect when the called party presses the "#" key.

T
Blind transfer initiated by the calling party. Allows the calling party to transfer the call by pressing the blind transfer key (normally "#"). Reinvites are not possible when this option is selected because Asterisk must monitor the connection to detect when the called party presses the "#" key.

w
Allows the called party to start recording the call by pressing the automon key sequence (as defined in features.conf). If the TOUCH_MONITOR variable is set, its value is passed to Monitor() as a parameter when recording starts. If it is not set, WAV,,m is passed to Monitor().

W
Allows the calling party to start recording the call by pressing the automon key sequence (as defined in features.conf).

f
Sets the caller ID as the number of the line making or redirecting the outgoing call. Some PSTNs don't allow IDs from extensions other than those assigned to you. For example, if you have a PRI, you would use f to overwrite the caller ID provided by a SIP extension to that belonging to the outgoing Zap channel on the PRI.

o
Uses the caller ID received on the incoming leg of a call as the caller ID for the outgoing leg. This is useful if a call is accepted and then transferred; in the normal case, the caller ID of the initial recipient is used for the outgoing leg, which can be confusing to the ultimate recipient. For example, say Joe calls Mary; Mary decides that Joe really needs to speak to Don and transfers the call. If option o is set, Don will see Joe's number on his display when Mary transfers him, instead of Mary's number.

r
Generate a ringing tone for the calling party. Normally Asterisk will generate a ringing tone when it is appropriate. Option r forces it to do so no matter the circumstance. Sometimes called devices don't provide useful call progress information (or none at all) and r is needed; however, this can also lead to strange behavior, such as initial ringing interrupted by a busy signal.

m[class]
Plays music to the caller until the call is answered. Optionally you can provide the Music-on-Hold class (as defined in musiconhold.conf).

M(x[^arg])
Runs the macro x when the call is answered, optionally passing ^ (caret) separated arguments. The macro may set the MACRO_RESULT channel variable to one of the following values:

ABORT
Hangs up both ends of the call.

CONGESTION
Indicates congestion on the line.

BUSY
Indicates that the line is busy (and jumps to n+101).

CONTINUE
Hangs the called end up and continues in the dialplan.

GOTO:<context>^<extension>^<priority>
Jumps to the specified point in the dialplan.

h
Allows the called party to hang up by pressing "*".

H
Allows the calling party to hang up by pressing "*".

C
Resets the Call Detail Record (CDR) for this call. Normally, the CDR clock is reset from the moment the call is answered by Asterisk; if CDRs are being used for billing purposes, sometimes it's appropriate to reset the timer when the connection between two parties is actually established.

P[(x)]
Uses the Privacy Manager (sollte verkettet sein) if no caller ID is present, where the optional variable x is a family in the AstDB. The Privacy Manager asks the caller to enter a 10 digit telephone number if no caller ID is provided, providing a simple way to screen for telemarketers and solicitors blocking their caller ID. See also LookupBlacklist().

g
Proceeds in the context when the target channel has been hung up.

G(context^extension^priority)
Drops both channels into the specified context, extension and priority when the call is answered.

A(x)
Plays an announcement to the called party, where x is the sound file prefix. For example, A(confirm) would play the most efficient version of confirm (such as confirm.gsm, or confirm.wav) that can be found in the /var/lib/asterisk/sounds directory.

D([called][:calling])
Sends DTMF digits after the call is answered but before it is bridged. The called digits are transmitted to the called party, the calling digits to the calling party. One or both parameters may be set.

L(x[:y][:z])
Limits call duration to x milliseconds. At y ms before the maximum allowed duration, and thereafter every z ms until the end of the call, a warning is given. The x must be defined, y and z are optional. The behavior can be further controlled with the following variables:

LIMIT_PLAYAUDIO_CALLER=yes|no
Sets whether the calling party should hear announcements.

LIMIT_PLAYAUDIO_CALLEE=yes|no
Sets whether the called party should hear announcements.

LIMIT_TIMEOUT_FILE=filename
Specifies the sound file to be played after the maximum duration is reached and the call is ended.

LIMIT_CONNECT_FILE=filename
Specifies the sound file to be played when the call is connected.

LIMIT_WARNING_FILE=filename
Specifies the sound file to be played for the warning signal when y is set.

j
Turns priority jumping on (i.e., the call jumps to priority n+101 (where n is the current priority) if all the channels respond busy).

A call may be parked instead of transferred Ein Anruf kann auch geparkt werden, statt übermittelt zu werden (was mit t oder T-Flag der Fall ist). Anrufe werden gewöhnlich geparkt, indem man sie der Extension 700 übermittelt, aber dieses Verhalten ist in features.conf konfigurierbar.

n

Privacy Manager setting. Caller introductions are not to be saved in the priv-callerintros directory.

N

Privacy Manager setting. Calls are not screened if caller ID information is provided.

Mit dem Enden der Dial()-Anwendung werden die folgenden Variablen gesetzt:

DIALEDTIME
Die gesamte Zeit, die von der Ausführung der Dial()-Anwendung an bis zu ihrer Beendigung verstrichen ist.

ANSWEREDTIME
Die gesamte Zeit, die während des Anrufs vergangen ist.

DIALSTATUS
Der Status des Anrufs, ausgedrückt durch einen der folgenden Werte:

CHANUNAVAIL
Der Channel ist nicht verfügbar.

CONGESTION
Der Channel hat ein Stau-Signal zurückgeliefert, was gewöhnlich die Unfähigkeit der Fertigstellung der Verbindung kennzeichnet.

NOANSWER
Der Channel hat in der durch die Klingel-Timeout-Option gesetzten Frist nicht geantwortet.

BUSY
Der angerufene Channel ist momentan belegt.

ANSWER
Der Channel hat den Anruf beantwortet.

CANCEL
Der Anruf wurde abgebrochen.

When Dial() completes, the following variables are set:

DIALEDTIME

The total elapsed time from the time the Dial() command is executed until its completion.

ANSWEREDTIME

The time elapsed during conversation.

NOANSWER

The channel was not answered before the ring timeout had expired.

BUSY

The called channel is currently busy.

ANSWER

The called channel was answered.

CANCEL

The call was interrupted before it could be completed.

; dial a number on Zap channel 2, let it ring a maximum of 10 seconds:

exten => 123,1,Dial(Zap/2/1234567,10,tTm)

; otherwise proceed in the dialplan:

exten => 123,n,Playback(sorry)

exten => 123,n,Hangup()

; dial extension 500 over IAX on host widgets.biz:

exten => 123,1,Dial(IAX/username:password@widgets.biz/500)

	[image: image73.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Dial' =-

[Synopsis]

Place a call and connect to the current channel

[Description]

 Dial(Technology/resource[&Tech2/resource2...][|timeout][|options][|URL

]):

This application will place calls to one or more specified channels. As

soon

as one of the requested channels answers, the originating channel will b

e

answered, if it has not already been answered. These two channels will t

hen

be active in a bridged call. All other channels that were requested will

 then

be hung up.

 Unless there is a timeout specified, the Dial application will wait

indefinitely until one of the called channels answers, the user hangs up

, or

if all of the called channels are busy or unavailable. Dialplan executin

g will

continue if no requested channels can be called, or if the timeout expir

es.

 This application sets the following channel variables upon completion:

 DIALEDTIME - This is the time from dialing a channel until when it

 is disconnected.

 ANSWEREDTIME - This is the amount of time for actual call.

 DIALSTATUS - This is the status of the call:

 CHANUNAVAIL | CONGESTION | NOANSWER | BUSY | ANSWER |

 CANCEL

 DONTCALL | TORTURE

 For the Privacy and Screening Modes, the DIALSTATUS variable will be s

et to

DONTCALL if the called party chooses to send the calling party to the 'G

o Away'

script. The DIALSTATUS variable will be set to TORTURE if the called par

ty

wants to send the caller to the 'torture' script.

 This application will report normal termination if the originating cha

nnel

hangs up, or if the call is bridged and either of the parties in the bri

dge

ends the call.

 The optional URL will be sent to the called party if the channel suppo

rts it.

 If the OUTBOUND_GROUP variable is set, all peer channels created by th

is

application will be put into that group (as in Set(GROUP()=...).

 Options:

 A(x) - Play an announcement to the called party, using 'x' as the fi

le.

 C - Reset the CDR for this call.

 d - Allow the calling user to dial a 1 digit extension while wait

ing for

 a call to be answered. Exit to that extension if it exists in

 the

 current context, or the context defined in the EXITCONTEXT va

riable,

 if it exists.

 D([called][:calling]) - Send the specified DTMF strings *after* the

called

 party has answered, but before the call gets bridged. The 'ca

lled'

 DTMF string is sent to the called party, and the 'calling' DT

MF

 string is sent to the calling party. Both parameters can be u

sed

 alone.

 f - Force the callerid of the *calling* channel to be set as the

 extension associated with the channel using a dialplan 'hint'

.

 For example, some PSTNs do not allow CallerID to be set to an

ything

 other than the number assigned to the caller.

 g - Proceed with dialplan execution at the current extension if t

he

 destination channel hangs up.

 G(context^exten^pri) - If the call is answered, transfer the calling

 party to

 the specified priority and the called party to the specified

priority+1.

 Optionally, an extension, or extension and context may be spe

cified.

 Otherwise, the current extension is used. You cannot use any

additional

 action post answer options in conjunction with this option.

 h - Allow the called party to hang up by sending the '*' DTMF dig

it.

 H - Allow the calling party to hang up by hitting the '*' DTMF di

git.

 i - Asterisk will ignore any forwarding requests it may receive o

n this

 dial attempt.

 j - Jump to priority n+101 if all of the requested channels were

busy.

 L(x[:y][:z]) - Limit the call to 'x' ms. Play a warning when 'y' ms

are

 left. Repeat the warning every 'z' ms. The following special

 variables can be used with this option:

 * LIMIT_PLAYAUDIO_CALLER yes|no (default yes)

 Play sounds to the caller.

 * LIMIT_PLAYAUDIO_CALLEE yes|no

 Play sounds to the callee.

 * LIMIT_TIMEOUT_FILE File to play when time is up.

 * LIMIT_CONNECT_FILE File to play when call begins.

 * LIMIT_WARNING_FILE File to play as warning if 'y' is

defined.

 The default is to say the time rem

aining.

 m([class]) - Provide hold music to the calling party until a request

ed

 channel answers. A specific MusicOnHold class can be

 specified.

 M(x[^arg]) - Execute the Macro for the *called* channel before conne

cting

 to the calling channel. Arguments can be specified to the Mac

ro

 using '^' as a delimeter. The Macro can set the variable

 MACRO_RESULT to specify the following actions after the Macro

 is

 finished executing.

 * ABORT Hangup both legs of the call.

 * CONGESTION Behave as if line congestion was encountered.

 * BUSY Behave as if a busy signal was encountered. Th

is will also

 have the application jump to priority n+101 if

 the

 'j' option is set.

 * CONTINUE Hangup the called party and allow the calling

party

 to continue dialplan execution at the next pri

ority.

 * GOTO:<context>^<xexten>^<priority> - Transfer the call to t

he

 specified priority. Optionally, an extension,

or

 extension and priority can be specified.

 You cannot use any additional action post answer options in c

onjunction

 with this option. Also, pbx services are not run on the peer

(called) channel,

 so you will not be able to set timeouts via the TIMEOUT() fun

ction in this macro.

 n - This option is a modifier for the screen/privacy mode. It spe

cifies

 that no introductions are to be saved in the priv-callerintro

s

 directory.

 N - This option is a modifier for the screen/privacy mode. It spe

cifies

 that if callerID is present, do not screen the call.

 o - Specify that the CallerID that was present on the *calling* c

hannel

 be set as the CallerID on the *called* channel. This was the

 behavior of Asterisk 1.0 and earlier.

 O([x]) - "Operator Services" mode (Zaptel channel to Zaptel channel

 only, if specified on non-Zaptel interface, it will be igno

red).

 When the destination answers (presumably an operator servic

es

 station), the originator no longer has control of their lin

e.

 They may hang up, but the switch will not release their lin

e

 until the destination party hangs up (the operator). Specif

ied

 without an arg, or with 1 as an arg, the originator hanging

 up

 will cause the phone to ring back immediately. With a 2 spe

cified,

 when the "operator" flashes the trunk, it will ring their p

hone

 back.

 p - This option enables screening mode. This is basically Privacy

 mode

 without memory.

 P([x]) - Enable privacy mode. Use 'x' as the family/key in the datab

ase if

 it is provided. The current extension is used if a database

 family/key is not specified.

 r - Indicate ringing to the calling party. Pass no audio to the c

alling

 party until the called channel has answered.

 S(x) - Hang up the call after 'x' seconds *after* the called party h

as

 answered the call.

 t - Allow the called party to transfer the calling party by sendi

ng the

 DTMF sequence defined in features.conf.

 T - Allow the calling party to transfer the called party by sendi

ng the

 DTMF sequence defined in features.conf.

 w - Allow the called party to enable recording of the call by sen

ding

 the DTMF sequence defined for one-touch recording in features

.conf.

 W - Allow the calling party to enable recording of the call by se

nding

 the DTMF sequence defined for one-touch recording in features

.conf.

 k - Allow the called party to enable parking of the call by sendi

ng

 the DTMF sequence defined for call parking in features.conf.

 K - Allow the calling party to enable parking of the call by send

ing

 the DTMF sequence defined for call parking in features.conf.

diff output to internal help in Asterisk 1.2:

62,63d61

< i - Asterisk will ignore any forwarding requests it may receive

 on this

< dial attempt.

95,96c93

< with this option. Also, pbx services are not run on the pee

r (called) channel,

< so you will not be able to set timeouts via the TIMEOUT() f

unction in this macro.

> with this option.

105,114d101

< O([x]) - "Operator Services" mode (Zaptel channel to Zaptel channe

l

< only, if specified on non-Zaptel interface, it will be ig

nored).

< When the destination answers (presumably an operator serv

ices

< station), the originator no longer has control of their l

ine.

< They may hang up, but the switch will not release their l

ine

< until the destination party hangs up (the operator). Spec

ified

< without an arg, or with 1 as an arg, the originator hangi

ng up

< will cause the phone to ring back immediately. With a 2 s

pecified,

< when the "operator" flashes the trunk, it will ring their

 phone

< back.

132,135d118

< k - Allow the called party to enable parking of the call by sen

ding

< the DTMF sequence defined for call parking in features.conf

.

< K - Allow the calling party to enable parking of the call by se

nding

< the DTMF sequence defined for call parking in features.conf

.

See also. the section called “RetryDial()”

[48] Generally, channels of any type supported by Asterisk may be connected - for example, IAX, SIP, H.323, Skinny, PRI, FXO, FXS, Local ...

[49] :-)

Dictate()

Virtual dictation machine

 Dictate([path[,filename]])
Starts a virtual dictation machine. The options define the base directory (default: /var/spool/asterisk/dictate/) and (numerical) filename. The files are recorded in raw format.

The user can control dictation with these keys:

0
Help

1
Switches between playback and record modes

*
Pause / continue

Select file / enter new file name (e.g. 1234#)

In playback mode:

2
Switches the playback speed by increments (1x, 2x, 3x, 4x)

7
Jumps back a set time interval

8
Jumps forward a set time interval

In record mode:

8
Erase recording and start over

; Take dictation:

exten => 123,1,Dictate()

To provide very system user her own dictation machine, you might set the path to /var/spool/asterisk/dictate/${EXTEN}.

	[image: image74.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Dictate' =-

[Synopsis]

Virtual Dictation Machine

[Description]

 Dictate([<base_dir>[|<filename>]])

Start dictation machine using optional base dir for files.

diff output to internal help in Asterisk 1.2:

8c8

< Dictate([<base_dir>[|<filename>]])

> Dictate([<base_dir>])

See also. the section called “Record()”

Directory()

Provides a directory of users or user voicemail box numbers (for more on system directories and Dial-by-Name, see the section called “Directory (Dial-by-Name)”).

 Directory(voicemail-context[,dialplan-context[,options]])
Lets callers search a directory by the user's name. The list of names and extensions is configured in voicemail.conf. The voicemail-context parameter is required.

The dialplan-context defines the context to be used when dialing the user's extension. If this is not provided, voicemail-context is assumed. The only option currently accepted is f, which allows dialing by first name.

If the user dials "0" (zero) and the extension o exists in the current context, the call goes to this extension. Likewise, pressing "*" sends the call to the extension a, if it exists. This behavior is similar to that found in Voicemail().

Returns 0 unless the caller hangs up.

exten => *,1,Directory(default,incoming)

exten => #,1,Directory(default,incoming,f)

	[image: image75.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Directory' =-

[Synopsis]

Provide directory of voicemail extensions

[Description]

 Directory(vm-context[|dial-context[|options]]): This application will

present

the calling channel with a directory of extensions from which they can s

earch

by name. The list of names and corresponding extensions is retrieved fro

m the

voicemail configuration file, voicemail.conf.

 This application will immediately exit if one of the following DTMF di

gits are

received and the extension to jump to exists:

 0 - Jump to the 'o' extension, if it exists.

 * - Jump to the 'a' extension, if it exists.

 Parameters:

 vm-context - This is the context within voicemail.conf to use for

the

 Directory.

 dial-context - This is the dialplan context to use when looking for

an

 extension that the user has selected, or when jumping

 to the

 'o' or 'a' extension.

 Options:

 e - In addition to the name, also read the extension number to the

 caller before presenting dialing options.

 f - Allow the caller to enter the first name of a user in the direct

ory

 instead of using the last name.

diff output to internal help in Asterisk 1.2:

25,26d24

< e - In addition to the name, also read the extension number to the

< caller before presenting dialing options.

See also. voicemail.conf

DISA()

Direct Inward System Access lets outside callers enter the system and provides them with an internal dial tone.

DISA(password[,context[,callerid[,mailbox[@voicemail-context]]]])

DISA(password-file[,callerid[,mailbox[@voicemail-context]]])

Provides an internal dial tone to outside callers such that they can make calls as though calling from an internal extension. Upon hearing the dial tone, an access code must be entered followed by the "#" key. If it is correct, the caller hears another dial tone; this is the system dial tone and the caller can now dial and initiate calls.

	[image: image76.png]

	

	
	This type of access represents a serious and real security risk and should be planned and considered carefully before use, if it must be used at all!

The password option is a numeric access code that must be entered in order for the caller to be able to make calls out. Following this particular syntax, all the users that call in will use the same access code. If you want to allow unsecured access, enter the string "no-password" instead of an actual password.

The context option specifies the context in which the initiated call will be placed. If it is not provided, DISA() assumes the context named disa.

The callerid option sets the mailbox number (and the optional voicemail-context) of a mailbox. If the mailbox contains new messages the caller will hear a stuttered dial tone to indicate this.

Alternatively, you may use password-file to define multiple access passwords. Each line of this file can contain either an access code or a combination of an access code and a context, separated by the "|" (pipe) character. If no context is specified, disa is assumed.

If the caller successfully authenticates with a valid access code, DISA() will start the call in the specified context.

; Allow outside callers to dial 800 numbers, provided they know the

; password (1234). Set the caller ID so that the call appears to be

; coming from inside the company:

[incoming]

exten => 123,1,DISA(1234,disa,Widgets Inc <212-555-3412>)

[disa]

exten => _0800XXXXXXXX,1,Dial(Zap/4/${EXTEN})

	[image: image77.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'DISA' =-

[Synopsis]

DISA (Direct Inward System Access)

[Description]

DISA(<numeric passcode>[|<context>]) or DISA(<filename>)

The DISA, Direct Inward System Access, application allows someone from

outside the telephone switch (PBX) to obtain an "internal" system

dialtone and to place calls from it as if they were placing a call from

within the switch.

DISA plays a dialtone. The user enters their numeric passcode, followed

by

the pound sign (#). If the passcode is correct, the user is then given

system dialtone on which a call may be placed. Obviously, this type

of access has SERIOUS security implications, and GREAT care must be

taken NOT to compromise your security.

There is a possibility of accessing DISA without password. Simply

exchange your password with "no-password".

 Example: exten => s,1,DISA(no-password|local)

Be aware that using this compromises the security of your PBX.

The arguments to this application (in extensions.conf) allow either

specification of a single global passcode (that everyone uses), or

individual passcodes contained in a file. It also allows specification

of the context on which the user will be dialing. If no context is

specified, the DISA application defaults the context to "disa".

Presumably a normal system will have a special context set up

for DISA use with some or a lot of restrictions.

The file that contains the passcodes (if used) allows specification

of either just a passcode (defaulting to the "disa" context, or

passcode|context on each line of the file. The file may contain blank

lines, or comments starting with "#" or ";". In addition, the

above arguments may have |new-callerid-string appended to them, to

specify a new (different) callerid to be used for this call, for

example: numeric-passcode|context|"My Phone" <(234) 123-4567> or

full-pathname-of-passcode-file|"My Phone" <(234) 123-4567>. Last

but not least, |mailbox[@context] may be appended, which will cause

a stutter-dialtone (indication "dialrecall") to be used, if the

specified mailbox contains any new messages, for example:

numeric-passcode|context||1234 (w/a changing callerid). Note that

in the case of specifying the numeric-passcode, the context must be

specified if the callerid is specified also.

If login is successful, the application looks up the dialed number in

the specified (or default) context, and executes it if found.

If the user enters an invalid extension and extension "i" (invalid)

exists in the context, it will be used. Also, if you set the 5th argumen

t

to 'NOANSWER', the DISA application will not answer initially.

diff output to internal help in Asterisk 1.2:

8c8

< DISA(<numeric passcode>[|<context>]) or DISA(<filename>)

> DISA(<numeric passcode>[|<context>]) or disa(<filename>)

28c28

< individual passcodes contained in a file. It also allows specification

> individual passcodes contained in a file. It also allow specification

52,53c52

< exists in the context, it will be used. Also, if you set the 5th argum

ent

< to 'NOANSWER', the DISA application will not answer initially.

> exists in the context, it will be used.

DumpChan()

Prints information about the calling channel on the console.

 DumpChan([min_verbose_level])
Shows information about the calling channel and the contents of all the channel variables. If min_verbose_level is set, only messages at the same or higher verbosity level are printed.

Returns 0.

exten => 123,1,Answer()

exten => 123,n,DumpChan()

exten => 123,n,Background(enter-ext-of-person)

	[image: image78.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'DumpChan' =-

[Synopsis]

Dump Info About The Calling Channel

[Description]

 DumpChan([<min_verbose_level>])

Displays information on channel and listing of all channel

variables. If min_verbose_level is specified, output is only

displayed when the verbose level is currently set to that number

or greater.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “NoOp()”, the section called “Log()”, the section called “Verbose()”
EAGI()

Calls an AGI-compliant application.

 EAGI(program[,arguments])
(Similar to AGI(), FastAGI(), DeadAGI())

Runs an Asterisk Gateway Interface compliant program called program on the current channel. AGI scripts or programs can be implemented in almost any conceivable language (e.g. Perl, PHP) and may be used to manipulate the channel, play sound files, interpret DTMF tones, and so on. Asterisk communicates with the AGI program over stdin and stdout. The arguments are passed directly to the AGI program at execution time.

The AGI program must be flagged as executable in the filesystem. The path is relative to the Asterisk AGI directory, which is at /var/lib/asterisk/agi-bin/ by default.

To run AGI programs on inactive channels (as in the case of an h-extension, where the channel is on-hook), used DeadAGI() instead. To run AGI programs on another server in the network, use FastAGI().

Use EAGI() when you need access to the incoming audio stream. The incoming audio stream is provided on file descriptor 3.

[50]Returns -1 on hang-up or if the AGI program requests a hang-up; returns 0 if no hang-up is requested.

; call my AGI script:

exten => 123,1,AGI(agi-script)

exten => 123,n,EAGI(eagi-script)

	[image: image79.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'EAGI' =-

[Synopsis]

Executes an EAGI compliant application

[Description]

 [E|Dead]AGI(command|args): Executes an Asterisk Gateway Interface comp

liant

program on a channel. AGI allows Asterisk to launch external programs

written in any language to control a telephony channel, play audio,

read DTMF digits, etc. by communicating with the AGI protocol on stdin

and stdout.

 This channel will stop dialplan execution on hangup inside of this

application, except when using DeadAGI. Otherwise, dialplan execution

will continue normally.

 A locally executed AGI script will receive SIGHUP on hangup from the c

hannel

except when using DeadAGI. This can be disabled by setting the AGISIGHUP

 channel

variable to "no" before executing the AGI application.

 Using 'EAGI' provides enhanced AGI, with incoming audio available out

of band

on file descriptor 3

 Use the CLI command 'agi show' to list available agi commands

 This application sets the following channel variable upon completion:

 AGISTATUS The status of the attempt to the run the AGI script

 text string, one of SUCCESS | FAILED | HANGUP

diff output to internal help in Asterisk 1.2:

13,19c13,15

< This channel will stop dialplan execution on hangup inside of this

< application, except when using DeadAGI. Otherwise, dialplan execution

< will continue normally.

< A locally executed AGI script will receive SIGHUP on hangup from the

 channel

< except when using DeadAGI. This can be disabled by setting the AGISIGH

UP channel

< variable to "no" before executing the AGI application.

< Using 'EAGI' provides enhanced AGI, with incoming audio available ou

t of band

> Returns -1 on hangup (except for DeadAGI) or if application requested

> hangup, or 0 on non-hangup exit.

> Using 'EAGI' provides enhanced AGI, with incoming audio available out

of band

22,25c18

< Use the CLI command 'agi show' to list available agi commands

< This application sets the following channel variable upon completion

:

< AGISTATUS The status of the attempt to the run the AGI scrip

t

< text string, one of SUCCESS | FAILED | HANGUP

> Use the CLI command 'show agi' to list available agi commands

Siehe. the section called “AGI()”.

[50] a reminder: 0: stdin, 1: stdout, 2:stderr. File descriptor 3 is freely assignable.

Echo()

Repeats incoming audio to the caller.

 Echo()
Takes any incoming audio and returns it on the same channel. This application is used primarily for troubleshooting and testing of delay (latency) and sound quality on VoIP connections. The caller can end the call by pressing "#".

Returns 0 if the caller ends the call with "#" or -1 if the caller hangs up.

exten => 123,1,Echo()

exten => 123,n,Playback(vm-goodbye)

	[image: image80.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Echo' =-

[Synopsis]

Echo audio, video, or DTMF back to the calling party

[Description]

 Echo(): This application will echo any audio, video, or DTMF frames re

ad from

the calling channel back to itself. If the DTMF digit '#' is received, t

he

application will exit.

diff output to internal help in Asterisk 1.2:

5c5

< Echo audio, video, or DTMF back to the calling party

> Echo audio read back to the user

8,10c8,10

< Echo(): This application will echo any audio, video, or DTMF frames

read from

< the calling channel back to itself. If the DTMF digit '#' is received,

 the

< application will exit.

> Echo(): Echo audio read from channel back to the channel.

> User can exit the application by either pressing the '#' key,

> or hanging up.

See also. the section called “Milliwatt()”

EndWhile()

Ends a while loop.

 EndWhile()
Returns to the previously called While() statement. For a complete description of while loops in Asterisk, see the section called “While()”.

exten => 123,1,Answer()

exten => 123,n,Set(i=1)

exten => 123,n,While($[${i} < 5])

exten => 123,n,SayNumber(${i})

exten => 123,n,Set(i=$[${i} + 1])

exten => 123,n,EndWhile()

exten => 123,n,Hangup()

	[image: image81.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'EndWhile' =-

[Synopsis]

End a while loop

[Description]

Usage: EndWhile()

Return to the previous called While

diff output to internal help in Asterisk 1.2:

5c5

< End a while loop

> End A While Loop

10a11

>

See also. the section called “While()”, the section called “GotoIf()”
Exec()

Führt eine Asterisk-Anwendung dynamisch aus.

Exec(application(arguments))

Allows the execution of an arbitrary dialplan application, even if this application is not hardcoded into the dialplan. Returns the value returned by the application or -2 if the application cannot be found. The arguments are passed to the called application.

This applications enables the calling of applications out of a database or other external source.

exten => 123,1,Set(app=SayDigits(12345))

exten => 123,2,Exec(${app})

	[image: image82.png]

	

	
	A negative return value will mean that execution of the dialplan ends. If this is not desired, use TryExec().

	[image: image83.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Exec' =-

[Synopsis]

Executes dialplan application

[Description]

Usage: Exec(appname(arguments))

 Allows an arbitrary application to be invoked even when not

hardcoded into the dialplan. If the underlying application

terminates the dialplan, or if the application cannot be found,

Exec will terminate the dialplan.

 To invoke external applications, see the application System.

 If you would like to catch any error instead, see TryExec.

diff output to internal help in Asterisk 1.2:

5c5

< Executes dialplan application

> Executes internal application

10,14c10,12

< hardcoded into the dialplan. If the underlying application

< terminates the dialplan, or if the application cannot be found,

< Exec will terminate the dialplan.

< To invoke external applications, see the application System.

< If you would like to catch any error instead, see TryExec.

> hardcoded into the dialplan. To invoke external applications

> see the application System. Returns whatever value the

> app returns or a non-zero value if the app cannot be found.

See also. the section called “ExecIf()”, the section called “TryExec()”, the section called “System()”
ExecIf()

Executes an Asterisk application under specific conditions.

 ExecIf(expression,application,arguments)
If expression evaluates to true, the defined application is executed with the provided arguments, and the return value is returned. See doc/README.variables (1.2) / doc/channelvariables.txt (1.4) for more information about standard expressions for Asterisk.

If expression evaluates to false, execution moves to the next priority in the extension.

exten => 123,1,ExecIf($[${CALLERID(num)} = 101],SayDigits,123)

exten => 123,n,SayDigits(678)

	[image: image84.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ExecIf' =-

[Synopsis]

Executes dialplan application, conditionally

[Description]

Usage: ExecIF (<expr>|<app>|<data>)

If <expr> is true, execute and return the result of <app>(<data>).

If <expr> is true, but <app> is not found, then the application

will return a non-zero value.

diff output to internal help in Asterisk 1.2:

5c5

< Executes dialplan application, conditionally

> Conditional exec

12d11

<

See also. the section called “Exec()”

ExecIfTime()

Executes an application based on the current time.

 ExecIf(times|daysofweek|daysofmonth|months?application[,arguments])
If the current time is in the time window defined, application is executed with arguments and the result returned. The time window is defined the same way as it is for include (see the section called “Time-conditional include statements”), GotoIfTime() (see the section called “GotoIfTime()”) or IFTIME() (see the section called “IFTIME()”).

If the current time is not in the time window defined, execution continues in the next priority.

	[image: image85.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ExecIfTime' =-

[Synopsis]

Conditional application execution based on the current time

[Description]

 ExecIfTime(<times>|<weekdays>|<mdays>|<months>?appname[|appargs]):

This application will execute the specified dialplan application, with o

ptional

arguments, if the current time matches the given time specification.

diff output to internal help in Asterisk 1.2:

10c10,12

< arguments, if the current time matches the given time specification.

> arguments, if the current time matches the given time specification. F

urther

> information on the time speicification can be found in examples illust

rating

> how to do time-based context includes in the dialplan.

See also. the section called “Exec()”, the section called “ExecIf()”, the section called “GotoIfTime()”, the section called “IFTIME()”
ExitWhile()

Exits a while loop, irrespective of whether its condition has been satisfied.

 ExitWhile()
With ExitWhile() you can interrupt further execution whether or not the while condition has been satisfied.

	[image: image86.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ExitWhile' =-

[Synopsis]

End a While loop

[Description]

Usage: ExitWhile()

Exits a While loop, whether or not the conditional has been satisfied.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “While()”, the section called “EndWhile()”
ExtenSpy()

Eavesdrop on a channel attached to a specific extension and whisper to it if desired.

ExtenSpy(extension[@context][,options])

ExtenSpy() can listen to incoming and outgoing audio on channels used by the specified extension. The options:

b
Only listens to channels which belong to a bridged call.

g(grp)
Only listens to channels where the channel variable ${SPYGROUP} is set to grp. ${SPYGROUP} can contain a : separated list of values.

q
Do not play a tone or say the channel name when listening starts on a channel.

r([name])
Records the listening session to the spool directory. A filename may be specified if desired; chanspy is the default.

v([value])
Sets the initial volume. The value may be between -4 and 4.

w
Enables "whisper" mode. Lets the spying channel talk to the spyed-on channel.

W
Enables "private whisper mode". The "spying" channel can whisper to the spyed-on channel, but cannot listen.

The following key controls are available while listening:

Stepwise volume adjustment (-4 to 4)

*
Switch to another channel

	[image: image87.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ExtenSpy' =-

[Synopsis]

Listen to a channel, and optionally whisper into it

[Description]

 ExtenSpy(exten[@context][|options]): This application is used to liste

n to the

audio from an Asterisk channel. This includes the audio coming in and

out of the channel being spied on. Only channels created by outgoing cal

ls for the

specified extension will be selected for spying. If the optional context

 is not

supplied, the current channel's context will be used.

 While spying, the following actions may be performed:

 - Dialing # cycles the volume level.

 - Dialing * will stop spying and look for another channel to spy on.

 Options:

 b - Only spy on channels involved in a bridged call.

 g(grp) - Match only channels where their ${SPYGROUP} variable

 is set to

 contain 'grp' in an optional : delimited list.

 q - Don't play a beep when beginning to spy on a channel

, or speak the

 selected channel name.

 r[(basename)] - Record the session to the monitor spool directory. A

n

 optional base for the filename may be specified. The

 default is 'chanspy'.

 v([value]) - Adjust the initial volume in the range from -4 to 4.

 A

 negative value refers to a quieter setting.

 w - Enable 'whisper' mode, so the spying channel can tal

k to

 the spied-on channel.

 W - Enable 'private whisper' mode, so the spying channel

 can

 talk to the spied-on channel but cannot listen to th

at

 channel.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “ChanSpy()”, the section called “ZapBarge()”, the section called “ZapScan()”, the section called “Monitor()”
ExternalIVR()

Start an external IVR application.

 ExternalIVR(shell-command[,arg1[,arg2[,...]]])
Forks a process and starts an external IVR[51] application. This application then receives all DTMF events and responds accordingly. The application receives notification if the channel is hung up but must shutdown on its own. The protocol for this interface is described in doc/externalivr.txt.

	[image: image88.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ExternalIVR' =-

[Synopsis]

Interfaces with an external IVR application

[Description]

 ExternalIVR(command[|arg[|arg...]]): Forks an process to run the suppl

ied command,

and starts a generator on the channel. The generator's play list is

controlled by the external application, which can add and clear entries

via simple commands issued over its stdout. The external application

will receive all DTMF events received on the channel, and notification

if the channel is hung up. The application will not be forcibly terminat

ed

when the channel is hung up.

See doc/externalivr.txt for a protocol specification.

diff output to internal help in Asterisk 1.2:

15c15

< See doc/externalivr.txt for a protocol specification.

> See doc/README.externalivr for a protocol specification.

[51] Interactive Voice Response

FastAGI()

Calls an AGI-compliant application over a network connection.

 FastAGI(agi://hostname[:port][/script],arguments)
(Similar to AGI(), DeadAGI(), EAGI())

Runs an Asterisk Gateway Interface compliant program on the current channel, but calls the application from another host on the network. The intent is to help distribute the load of processor-intensive AGI scripts or programs to remote servers and reduce start-up latency of those programs (a FastAGI script can be started before it is actually needed, much like a FastCGI script on a web server).

FastAGI() attempts to connect directly to a running FastAGI program listening for connections on the specified port on the server hostname. The default port is 4573 if it is not specified. If script is defined, it is used to populate the variable agi_network_script and passed to the FastAGI program. The arguments are also passed to the program.

A sample FastAGI script can be found at agi/fastagi-test. Use this is a starting point for writing your own FastAGI applications.

Returns -1, if the application ends and requests a hang-up; returns 0 if it ends without requesting a hang-up.

; Connect to the sample FastAGI program "fastagi-test",

; which must nevertheless be running on the local machine:

exten => 123,1,Answer()

exten => 123,n,FastAGI(agi://localhost/fastagi-test)

; Connect to the FastAGI script "test" on the host "testbox"

; at port 9000 and pass parameter "123":

exten => 124,1,Answer()

exten => 124,n,FastAGI(agi://testbox:9000/test,123)

See also. the section called “AGI()”, the section called “DeadAGI()”
Festival()

Uses the free Festival text-to-speech (TTS) engine to read text to the caller.

 Festival(text[,keys])
Connects to the locally running Festival server (which must be installed separately), sends it the specified text and plays the resulting audio back to the caller. If keys are defined, pressing of the defined keys will interrupt playback and return the value of the key depressed; if any is provided as the value to keys, all keys will be recognized and the call will be passed to the appropriate extension in the dialplan.

Festival must be started before Asterisk, and the channel must be answered with Answer(), in order for this application to work..

exten => 123,1,Answer()

exten => 123,n,Festival('Hello World',#)

As an alternative to the application Festival(), you may also use the System() command to call Festival's command-line program text2wave and play back the resulting audio stream with Background() or Playback(), like so (for example only; pay attention to pathnames!):

exten => 123,1,Answer()

exten => 123,n,System(echo 'Hello World' | text2wave -o sound.wav -otype

 wav -)

exten => 123,n,Background(sound)

	[image: image89.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Festival' =-

[Synopsis]

Say text to the user

[Description]

 Festival(text[|intkeys]): Connect to Festival, send the argument, get

 back the waveform,play it to the user, allowing any given interrupt key

s to immediately terminate and return

the value, or 'any' to allow any number back (useful in dialplan)

diff output to internal help in Asterisk 1.2:

- none -

See also. contrib/README.festival

Flash()

Performs a "flash hook" on a Zap channel.

 Flash()
Performs a flash on a Zap channel.

A "flash" (also called a "switch-hook-flash", "flash hook" or "link") is simply a short depressing of the hook switch on an analog telephone for between 80 and 500 milliseconds (depending on the carrier), used primarily as a signalling method to provide feature control for simple analog telephone sets (such as for call waiting, three-way calling, call transfer and similar services).

Returns 0 upon success, or -1 if the channel is not a Zap-Channel.

exten => 123,1,Flash()

If an outgoing line supports flash-transfer (usually an extra service), you might use it on a Zap channel like so:

[macro-flash-transfer]

exten => s,1,Playback(transfer)

exten => s,n,Flash()

exten => s,n,Wait(1)

exten => s,n,SendDTMF(${ARG1})

exten => s,n,Wait(1)

exten => s,n,Hangup()

[outside-extensions]

; Transfer incoming calls on extension 6001 to the outside number (514)5

554138:

exten => 6001,1,Macro(flash-transfer,5145554138)

Sometimes it is necessary to adjust the flash duration; ask your carrier for the specification in your area. This can be done in zapata.conf with a parameter, e.g. flash=200 (the value is in milliseconds).

	[image: image90.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Flash' =-

[Synopsis]

Flashes a Zap Trunk

[Description]

 Flash(): Sends a flash on a zap trunk. This is only a hack for

people who want to perform transfers and such via AGI and is generally

quite useless oths application will only work on Zap trunks.

diff output to internal help in Asterisk 1.2:

- none -

FollowMe()

Follow-Me/Find-Me functionality.

 FollowMe(followMeID,options)
Read the configuration file followme.conf for a complete explanation.

	[image: image91.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'FollowMe' =-

[Synopsis]

Find-Me/Follow-Me application

[Description]

 FollowMe(followmeid|options):

This application performs Find-Me/Follow-Me functionality for the caller

as defined in the profile matching the <followmeid> parameter in

followme.conf. If the specified <followmeid> profile doesn't exist in

followme.conf, execution will be returned to the dialplan and call

execution will continue at the next priority.

 Options:

 s - Playback the incoming status message prior to starting the fo

llow-me step(s)

 a - Record the caller's name so it can be announced to the callee

 on each step

 n - Playback the unreachable status message if we've run out of s

teps to reach the

 or the callee has elected not to be reachable.

Returns -1 on hangup

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

ForkCDR()

Generates an additional CDR in the current call.

 ForkCDR()
Generates an additional CDR beginning from the moment the ForkCDR() command is called. Used for the purpose of distinguishing between total call duration and actual conversation duration for billing purposes. Option v will pass all the CDR variables to the new CDR.

exten => 123,n,ForkCDR()

	[image: image92.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ForkCDR' =-

[Synopsis]

Forks the Call Data Record

[Description]

 ForkCDR([options]): Causes the Call Data Record to fork an additional

cdr record starting from the time of the fork call

If the option 'v' is passed all cdr variables will be passed along also.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “NoCDR()”, the section called “ResetCDR()”
GetCPEID()

Retrieve the CPE-ID (Customer Premises Equipment ID) of an ADSI-capable telephone.

 GetCPEID()
Retrieves the CPE-ID and additional information, displaying it on the Asterisk CLI. This information is often needed to properly configure zapata.conf to support ADSI features.

Returns -1 on hang-up.

exten => 123,1,GetCPEID()

	[image: image93.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'GetCPEID' =-

[Synopsis]

Get ADSI CPE ID

[Description]

 GetCPEID: Obtains and displays ADSI CPE ID and other information in or

der

to properly setup zapata.conf for on-hook operations.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “ADSIProg()”, adsi.conf, zapata.conf
Gosub()

Jumps to the specified priority, extension and context and allows return.

 Gosub([[context,]extension,]priorität)
 Gosub(named_priority)
Like Goto() but allows the dialplan subroutine to return with Return().

Returns 0, or -1 if the target is invalid.

exten => 123,1,Gosub(set-cid)

exten => 123,n,Dial(SIP/${EXTEN})

exten => 123,10(set-cid),Set(CALLERID(all)=Widgets Inc <(212-555-3412>)

exten => 123,n,Return()

	[image: image94.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Gosub' =-

[Synopsis]

Jump to label, saving return address

[Description]

Gosub([[context|]exten|]priority)

 Jumps to the label specified, saving the return address.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “GosubIf()”, the section called “Goto()”, the section called “GotoIf()”, the section called “Return()”, the section called “Macro()”
GosubIf()

Jumps to the specified priority if a condition is satisfied and allows return.

 GosubIf(condition?labeliftrue:labeliffalse)
Jumps to the specified priority if a condition is satisfied (similar to GotoIf()) but allows the subroutine to return with Return().

Returns 0 or -1 if the target is invalid.

exten => telcid,1,Set(CALLERID(all)=Widgets <212-555-3412>)

exten => telcid,n,Return()

exten => faxcid,1,Set(CALLERID(all)=Widgets <212-555-3412>)

exten => faxcid,n,Return()

exten => _0.,1,GosubIf($[${CHANNEL:4:2} = 43]?faxcid,1:telcid,1)

exten => _0.,n,Dial(${TRUNK}/${EXTEN:1},,T)

	[image: image95.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'GosubIf' =-

[Synopsis]

Conditionally jump to label, saving return address

[Description]

GosubIf(condition?labeliftrue[:labeliffalse])

 If the condition is true, then jump to labeliftrue. If false, jumps t

o

labeliffalse, if specified. In either case, a jump saves the return poi

nt

in the dialplan, to be returned to with a Return.

diff output to internal help in Asterisk 1.2:

5c5

< Conditionally jump to label, saving return address

> Jump to label, saving return address

See also. the section called “Gosub()”, the section called “Goto()”, the section called “GotoIf()”, the section called “Return()”, the section called “Macro()”
Goto()

Jumps to a specified priority, extension and context.

 Goto([[context,]extension,]priority)
 Goto(named_priority)
Hands the currently active channel to the specified priority (and optionally, extension and context).

Optionally, a named priority may be specified to access a labelled priority. Named priorities work only in the current extension.

Always returns 0, even if the target is invalid.

exten => 123,1,Answer()

exten => 123,2,Set(COUNT=1)

exten => 123,3,SayNumber(${COUNT})

exten => 123,4,Set(COUNT=$[${COUNT} + 1])

exten => 123,5,Goto(3)

; das gleiche mit einer benannten Priorität:

exten => 124,1,Answer()

exten => 124,2,Set(COUNT=1)

exten => 124,3(announcement),SayNumber(${COUNT})

exten => 124,4,Set(COUNT=$[${COUNT} + 1])

exten => 124,5,Goto(announcement)

	[image: image96.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Goto' =-

[Synopsis]

Jump to a particular priority, extension, or context

[Description]

 Goto([[context|]extension|]priority): This application will cause the

calling channel to continue dialplan execution at the specified priority

.

If no specific extension, or extension and context, are specified, then

this

application will jump to the specified priority of the current extension

.

 If the attempt to jump to another location in the dialplan is not succ

essful,

then the channel will continue at the next priority of the current exten

sion.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “GotoIf()”, the section called “GotoIfTime()”, the section called “Gosub()”, the section called “GosubIf()”, the section called “Macro()”
GotoIf()

Jumps to a specified priority, extension and context if a condition is satisfied.

 GotoIf(condition?labeliftrue:labeliffalse)
Hands the currently active channel to the priority specified by labeliftrue if the condition is true, or to the priority specified in labeliffalse if the condition is false. Either labeliftrue or labeliffalse may be omitted (in which case execution continues with the next priority) but not both! You must include the colon delimiter (:).

In this case, a priority can be:

· a single priority, e.g. 10
· an extension and a priority, e.g. 123,10
· a context, extension and priority, e.g. incoming,123,10
· a named priority in the same extension, e.g. ok
exten => 123,1,GotoIf($[${test} = 5]?ok:no)

exten => 123,10(ok),Playback(tt-monkeys)

exten => 123,20(no),Playback(tt-weasels)

	[image: image97.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'GotoIf' =-

[Synopsis]

Conditional goto

[Description]

 GotoIf(condition?[labeliftrue]:[labeliffalse]): This application will

cause

the calling channel to jump to the specified location in the dialplan ba

sed on

the evaluation of the given condition. The channel will continue at

'labeliftrue' if the condition is true, or 'labeliffalse' if the conditi

on is

false. The labels are specified with the same syntax as used within the

Goto

application. If the label chosen by the condition is omitted, no jump i

s

performed, but execution continues with the next priority in the dialpla

n.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Goto()”, the section called “GotoIfTime()”, the section called “Gosub()”, the section called “GosubIf()”, the section called “Macro()”
GotoIfTime()

Jumps to the specified priority if the time condition is met.

 GotoIfTime(times,daysofweek,daysofmonth,months?[[context,]extension,]priority)
Jumps to the specified priority if the current time falls within the specified time window. Each element may be defined with a "*" (always) or a "-" (range).

Die Parameter zu dieser Anwendung sind:

times
Time interval, in 24 hour format with hours and minutes, e.g. 9:00-17:00
daysofweek
Weekdays (mon, tue, wed, thu, fri, sat, sun), e.g. mon-fri
daysofmonth
Days of the month (1-31), e.g. 1-15
months
Months of the year (jan, feb, mar, apr, mai, jun, jul, aug, sep, oct, nov, dec), e.g. apr-oct
; During business hours, jump to incoming-open context.

; We are open Monday to Friday from 9:00 to 18:00 (9 a.m. to 6 p.m.):

exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?incoming-open,s,1)

; Also Saturdays from 9 to 12:

exten => s,n,GotoIfTime(09:00-11:59,sat,*,*?incoming-open,s,1)

; After hours go to incoming-closed:

exten => s,n,Goto(incoming-closed,s,1)

	[image: image98.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'GotoIfTime' =-

[Synopsis]

Conditional Goto based on the current time

[Description]

 GotoIfTime(<times>|<weekdays>|<mdays>|<months>?[[context|]exten|]prior

ity):

This application will have the calling channel jump to the specified loc

ation

in the dialplan if the current time matches the given time specification

.

diff output to internal help in Asterisk 1.2:

9,10c9,12

< This application will have the calling channel jump to the specified l

ocation

< in the dialplan if the current time matches the given time specificati

on.

> This application will have the calling channel jump to the speicified

location

> int the dialplan if the current time matches the given time specificat

ion.

> Further information on the time specification can be found in examples

> illustrating how to do time-based context includes in the dialplan.

See also. the section called “GotoIf()”, the section called “ExecIfTime()”, the section called “IFTIME()”
Hangup()

Hangs up the active channel.

 Hangup()
Hangs up the active channel unconditionally.

Returns -1.

exten => 123,1,Answer()

exten => 123,n,Playback(vm-goodbye)

exten => 123,n,Hangup()

	[image: image99.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Hangup' =-

[Synopsis]

Hang up the calling channel

[Description]

 Hangup([causecode]): This application will hang up the calling channel

.

If a causecode is given the channel's hangup cause will be set to the gi

ven

value.

diff output to internal help in Asterisk 1.2:

8,10c8

< Hangup([causecode]): This application will hang up the calling chann

el.

< If a causecode is given the channel's hangup cause will be set to the

given

< value.

> Hangup(): This application will hang up the calling channel.

See also. the section called “Answer()”

IAX2Provision()

Provision a calling IAXy device, optionally using the specified template.

 IAX2Provision([template])
Provisions a calling IAXy device with template. If no template is used, the default is used. IAXy templates are defined in iaxprov.conf.

Returns 0 on success or -1 on failure.

exten => 123,1,IAX2Provision(default)

	[image: image100.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'IAX2Provision' =-

[Synopsis]

Provision a calling IAXy with a given template

[Description]

 IAX2Provision([template]): Provisions the calling IAXy (assuming

the calling entity is in fact an IAXy) with the given template or

default if one is not specified. Returns -1 on error or 0 on success.

diff output to internal help in Asterisk 1.2:

- none -

ImportVar()

Sets a variable with the contents of a channel variable from another channel.

 ImportVar(newVariable=channel,variable)
Sets the variable newVariable to the value contained in variable in the specified channel. If newVariable begins with "_", single inheritance is used; if it begins with "__", unlimited inheritance is used.

; import Caller-ID from channel Zap/1:

exten => 123,1,Answer()

exten => 123,n,ImportVar(cid=Zap/1,CALLERID)

	[image: image101.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ImportVar' =-

[Synopsis]

Import a variable from a channel into a new variable

[Description]

 ImportVar(newvar=channelname|variable): This application imports a var

iable

from the specified channel (as opposed to the current one) and stores it

 as

a variable in the current channel (the channel that is calling this

application). Variables created by this application have the same inheri

tance

properties as those created with the Set application. See the documentat

ion for

Set for more information.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Set()”

Log()

Sends a specified message to the specified log level.

 Log(level,message)
Delivers a specified message to a defined log level.

level
One of the following target levels: ERROR, WARNING, NOTICE, DEBUG, VERBOSE, DTMF
message
The message to be written to the log

	[image: image102.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Log' =-

[Synopsis]

Send arbitrary text to a selected log level

[Description]

Log(<level>|<message>)

 level must be one of ERROR, WARNING, NOTICE, DEBUG, VERBOSE, DTMF

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “NoOp()”, the section called “DumpChan()”, the section called “Verbose()”
LookupBlacklist()

Checks the caller ID of a call against the local number blacklist in the Asterisk database (AstDB).

 LookupBlacklist([options])
Searches for the caller ID number (or name) of the active channel in the blacklist family of the AstDB.des aktiven Channels in der AstDB in der Familie blacklist. If the option j is given, the number exists in the AstDB and the priority n+101 exists, the channel is handed to that priority. If no caller ID is available, the application does nothing.

Sets the channel variable LOOKUPBLSTATUS to FOUND or NOTFOUND.

To add numbers to the blacklist from the CLI, enter database put blacklist "number" "1"; similarly database del blacklist "number" to delete the entry and database show blacklist for a listing of all the entries in the database.

; Block calls from numbers in the blacklist,

; otherwise dial the number in the variable ${PETER}:

exten => 123,1,Answer()

exten => 123,n,LookupBlacklist()

exten => 123,n,GotoIf($["${LOOKUPBLSTATUS}" = "FOUND"]?black,1)

exten => 123,n,Dial(${PETER},30)

exten => black,1,Playback(tt-allbusy)

exten => black,n,Hangup()

You can accomplish the same effect as LookupBlacklist() with the following dialplan entries:

exten => 123,1,Macro(blacklist,${CALLERID(num)})

exten => 123,n,Dial(IAX2/user:secret@widgets.biz/500)

[macro-blacklist]

; Aufruf: Macro(blacklist,${CALLERID(num)})

exten => s,1,GotoIf(${DB_EXISTS(blacklist/${ARG1})}?black)

exten => s,10(black),NoOp(${ARG1} is in the blacklist)

exten => s,n,Busy(5)

exten => s,n,Hangup()

	[image: image103.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'LookupBlacklist' =-

[Synopsis]

Look up Caller*ID name/number from blacklist database

[Description]

 LookupBlacklist(options): Looks up the Caller*ID number on the active

channel in the Asterisk database (family 'blacklist').

The option string may contain the following character:

 'j' -- jump to n+101 priority if the number/name is found in the blackl

ist

This application sets the following channel variable upon completion:

 LOOKUPBLSTATUS The status of the Blacklist lookup as a text string, on

e of

 FOUND | NOTFOUND

Example: exten => 1234,1,LookupBlacklist()

diff output to internal help in Asterisk 1.2:

- none -

LookupCIDName()

Looks up a caller ID name in the AstDB.

 LookupCIDName()
Looks up the caller ID number in the AstDB (family cidname), and, if it exists, sets the corresponding caller ID name. This application does nothing if no caller ID is present. LookupCIDName() can be useful if you receive number information but no names, or if you want to change the caller ID information certain incoming calls.

Returns 0.

To add entries to the list from the CLI enter database put cidname "number" "name"; similarly enter database del cidname "number" to delete entries and database show cidname to print a list of all the entries in the database.

exten => 123,1,Answer()

exten => 123,n,LookupCIDName()

	[image: image104.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'LookupCIDName' =-

[Synopsis]

Look up CallerID Name from local database

[Description]

 LookupCIDName: Looks up the Caller*ID number on the active

channel in the Asterisk database (family 'cidname') and sets the

Caller*ID name. Does nothing if no Caller*ID was received on the

channel. This is useful if you do not subscribe to Caller*ID

name delivery, or if you want to change the names on some incoming

calls.

diff output to internal help in Asterisk 1.2:

- none -

Macro()

Executes a previously defined macro.

Macro(macroname[,arg1[,arg2[,...]]])

Executes a macro defined in the context macro-macroname by handing the channel over to the s extension in the macro and returning after the macro has finished running.

The called extension, context and priority are passed to the macro in the variables ${MACRO_EXTEN}, ${MACRO_CONTEXT} and ${MACRO_PRIORITY}. The arguments are passed to the macro in ${ARG1}, ${ARG2}, and so on.

Macro() returns -1 if any step in the macro returns -1, otherwise it returns 0. If the variable ${MACRO_OFFSET} is set when the macro finishes, the application will continue executing at priority n+1+MACRO_OFFSET if it exists, otherwise it will continue at n+1.

If Goto() is called from within the macro, macro execution ends and the call continues in the priority specified in Goto().

; define a macro that counts down from the provided value:

[macro-countdown]

exten => s,1,Set(COUNT=${ARG1})

exten => s,n,While($[${COUNT} > 0])

exten => s,n,SayNumber(${COUNT})

exten => s,n,Set(COUNT=$[${COUNT} - 1])

exten => s,n,EndWhile()

[default]

exten => 123,1,Macro(countdown,3) ; call the macro "countdown" with AR

G1=3

exten => 124,1,Macro(countdown,5) ; call the macro "countdown" with AR

G1=5

	[image: image105.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Macro' =-

[Synopsis]

Macro Implementation

[Description]

 Macro(macroname|arg1|arg2...): Executes a macro using the context

'macro-<macroname>', jumping to the 's' extension of that context and

executing each step, then returning when the steps end.

The calling extension, context, and priority are stored in ${MACRO_EXTEN

},

${MACRO_CONTEXT} and ${MACRO_PRIORITY} respectively. Arguments become

${ARG1}, ${ARG2}, etc in the macro context.

If you Goto out of the Macro context, the Macro will terminate and contr

ol

will be returned at the location of the Goto.

If ${MACRO_OFFSET} is set at termination, Macro will attempt to continue

at priority MACRO_OFFSET + N + 1 if such a step exists, and N + 1 otherw

ise.

WARNING: Because of the way Macro is implemented (it executes the priori

ties

 contained within it via sub-engine), and a fixed per-thread

 memory stack allowance, macros are limited to 7 levels

 of nesting (macro calling macro calling macro, etc.); It

 may be possible that stack-intensive applications in deeply nes

ted macros

 could cause asterisk to crash earlier than this limit.

diff output to internal help in Asterisk 1.2:

22,23c22,23

< may be possible that stack-intensive applications in deeply n

ested macros

< could cause asterisk to crash earlier than this limit.

> may be possible that stack-intensive applications in deeply n

ested

> macros could cause asterisk to crash earlier than this limit.

See also. the section called “Goto()”, the section called “Gosub()”
MacroExclusive()

Executes a previously defined macro but allows only a single instance of the macro to execute at any given point in time.

 MacroExclusive(macroname[,arg1[,arg2[,...]]])
Executes - same as Macro() - a macro defined in macro-macroname, by handing the channel over to the s extension in the macro and returning after the macro has finished running, but allows only a single instance to run at any given time! If the same macro is called at the same time from elsewhere in the dialplan, this second instance must wait until the first instance has completed.

The called extension, context and priority are passed to the macro in the variables ${MACRO_EXTEN}, ${MACRO_CONTEXT} and ${MACRO_PRIORITY}. The arguments are passed to the macro in ${ARG1}, ${ARG2}, and so on.

Macro() returns -1 if any step in the macro returns -1, otherwise it returns 0. If the variable ${MACRO_OFFSET} is set when the macro finishes, the application will continue executing at priority n+1+MACRO_OFFSET if it exists, otherwise it will continue at n+1.

If Goto() is called from within the macro, macro execution ends and the call continues in the priority specified in Goto().

; define a macro that counts down from the provided value:

[macro-countdown]

exten => s,1,Set(COUNT=${ARG1})

exten => s,n,While($[${COUNT} > 0])

exten => s,n,SayNumber(${COUNT})

exten => s,n,Set(COUNT=$[${COUNT} - 1])

exten => s,n,EndWhile()

[default]

exten => 123,1,MacroExclusive(countdown,3) ; call the macro "countdown

" with ARG1=3

exten => 124,1,MacroExclusive(countdown,5) ; call the macro "countdown

" with ARG1=5

	[image: image106.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MacroExclusive' =-

[Synopsis]

Exclusive Macro Implementation

[Description]

 MacroExclusive(macroname|arg1|arg2...):

Executes macro defined in the context 'macro-macroname'

Only one call at a time may run the macro.

(we'll wait if another call is busy executing in the Macro)

Arguments and return values as in application Macro()

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “Macro()”, the section called “Goto()”, the section called “Gosub()”, doc/macroexclusive.txt
MacroExit()

Interrupts execution of a macro.

 MacroExit()
May be used within a macro to end execution of the macro as though there were no further priorities remaining.

	[image: image107.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MacroExit' =-

[Synopsis]

Exit From Macro

[Description]

 MacroExit():

Causes the currently running macro to exit as if it had

ended normally by running out of priorities to execute.

If used outside a macro, will likely cause unexpected

behavior.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Macro()”

MacroIf()

Conditionally starts different macros.

 MacroIf(expression?macronameA[,argA1][:macronameB[,argB1]])
Calls a macro depending on a condition (defined in the same way as in GotoIf()).

	[image: image108.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MacroIf' =-

[Synopsis]

Conditional Macro Implementation

[Description]

 MacroIf(<expr>?macroname_a[|arg1][:macroname_b[|arg1]])

Executes macro defined in <macroname_a> if <expr> is true

(otherwise <macroname_b> if provided)

Arguments and return values as in application macro()

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Macro()”, the section called “GotoIf()”, the section called “GosubIf()”
mailboxExists()

Checks to see if the specified voicemail box exists.

 mailboxExists(mailbox[@context][,options])
Checks to see if the voicemail box defined in mailbox exists. A voicemail context may be specified if the mailbox being checked is not in the default context.

Sets the channel variable VMBOXEXISTSSTATUS to SUCCESS (mailbox found) or FAILED (mailbox not found).

Option j enables jumping to priority n+101 on success.

exten => 123,1,Answer()

exten => 123,n,mailboxExists(123@default)

exten => 123,n,Goto(box-${VMBOXEXISTSSTATUS})

exten => 123,10(box-SUCCESS),Voicemail(123,u)

exten => 123,20(box-FAILED),Playback(sorry)

	[image: image109.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'mailboxExists' =-

[Synopsis]

Check to see if Voicemail mailbox exists

[Description]

 mailboxExists(mailbox[@context][|options]): Check to see if the specif

ied

mailbox exists. If no voicemail context is specified, the 'default' cont

ext

will be used.

 This application will set the following channel variable upon completi

on:

 VMBOXEXISTSSTATUS - This will contain the status of the execution of

 the

 mailboxExists application. Possible values inclu

de:

 SUCCESS | FAILED

 Options:

 j - Jump to priority n+101 if the mailbox is found.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “VMCOUNT()”

MeetMe()

Places the caller in a MeetMe conference.

 MeetMe([conference][,options[,PIN]])
Connects the caller in the current channel to a MeetMe conference defined by conferenceNo. If this is not specified, the application asks the caller to enter a conference number.

If PIN is correctly set to the PIN (personal identification number) of the conference (set statically in meetme.conf or dynamically by the conference operator) the caller is placed directly into the conference; otherwise, the caller must enter the PIN first.

	[image: image110.png]

	

	
	MeetMe conferences require a Zaptel interface to be installed in the Asterisk server; these provide a time source for synchronization of the participating channels. If no Zaptel interface is available, the ztdummy driver may be used.

MeetMe conferences always use the ulaw codec internally. The more conference participants use other codecs such as GSM or alaw, the higher the processor load due to transcoding.

Valid options include:

a
Sets admin mode.

A
Marks the joining user as a special participant (see w and x).

b
Starts the AGI script defined in ${MEETME_AGI_BACKGROUND}, conf-background.agi by default. (Works only if all the channels in the conference are Zap channels.) The script is passed all DTMF keypresses; will not work in combination with options that also capture DTMF (such as p).

c
Announces the number of participants to a joining user.

d
Dynamically allocates a new conference.

D
Dynamically allocates a new conference but asks the user to set a PIN (if no PIN is desired, the user must press "#").

e
Selects an empty conference.

E
Selects an empty conference that does not require a PIN.

i
Announces join and exit of new participants with review (works only with Zap channels).

I

Announces join and exit of new participants without review (works only with Zap channels).

m
Listen-only mode.

M
Music-on-hold mode. Plays music-on-hold if there is only one participant in the conference.

o

Sets talker optimization. Improves conference quality and reduces transcoding overhead by muting participants who are not currently speaking.

p
Participants may leave by pressing "#".

P
Requests a PIN even if it is provided in the command.

q
Quiet mode. Does not play entry/exit notification tones.

r
Records a conference. File: ${MEETME_RECORDINGFILE}, format: ${MEETME_RECORDINGFORMAT}. Default filename is meetme-conf-rec-${conference}-${uniqueID}. The default format is wav. (Works only with Zap channels.)

s
Switches to menu (user or admin) "*" is pressed.

t
Talk-only mode.

T
Talker detection. (Information is sent to the Manager interface and displayed in the MeetMe list in the CLI.)

v
Video mode (not yet implemented).

w
Wait until the marked participant joins the conference. Until this point, the other participants will hear music-on-hold.

x
Ends the conference when the last marked participant exits (see A).

X
Participants may exit the conference by dialling a single-digit extension in the ${MEETME_EXIT_CONTEXT} context, or the current context if this variable is not defined. Option X does not work with p or s.

1

Does not play the "You are currently the only person in this conference" message when the first conference participant enters.

You can use e (or E) together with d (or D) to dynamically open a new conference. This means you will have to find a way of distributing the conference number to the other users, or employ some dialplan logic to accomplish the same objective.

	[image: image111.png]

	

	
	The options d or D dynamically open conferences; conferences are defined statically in meetme.conf.

exten => 123,1,Answer()

; Place the caller in conference 333 (with PIN 1234):

exten => 123,n,MeetMe(333,DpM,1234)

See also. the section called “MeetMeAdmin()”, the section called “MeetMeCount()”
Commands in the CLI. The following commands are for administering conferences from the CLI. (The value participant is the number of participant as displayed in the participant list):

MeetMe
List all conferences.

MeetMe list conference
List the participants in the specified conference.

MeetMe kick conference participant
Kicks a participant out of the conference.

MeetMe kick conference
Kicks all participants out of the conference.

MeetMe lock conference
Locks a conference to new participants.

MeetMe unlock conference
Unlocks a previous lock (see above).

MeetMe mute conference participant
Mute a conference participant.

MeetMe unmute conference participant
Unmute a conference participant (see above).

	[image: image112.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MeetMe' =-

[Synopsis]

MeetMe conference bridge

[Description]

 MeetMe([confno][,[options][,pin]]): Enters the user into a specified M

eetMe

conference. If the conference number is omitted, the user will be promp

ted

to enter one. User can exit the conference by hangup, or if the 'p' opt

ion

is specified, by pressing '#'.

Please note: The Zaptel kernel modules and at least one hardware driver

(or ztdummy)

 must be present for conferencing to operate properly. In ad

dition, the chan_zap

 channel driver must be loaded for the 'i' and 'r' options t

o operate at all.

The option string may contain zero or more of the following characters:

 'a' -- set admin mode

 'A' -- set marked mode

 'b' -- run AGI script specified in ${MEETME_AGI_BACKGROUND}

 Default: conf-background.agi (Note: This does not work wit

h

 non-Zap channels in the same conference)

 'c' -- announce user(s) count on joining a conference

 'd' -- dynamically add conference

 'D' -- dynamically add conference, prompting for a PIN

 'e' -- select an empty conference

 'E' -- select an empty pinless conference

 'i' -- announce user join/leave with review

 'I' -- announce user join/leave without review

 'l' -- set listen only mode (Listen only, no talking)

 'm' -- set initially muted

 'M' -- enable music on hold when the conference has a single calle

r

 'o' -- set talker optimization - treats talkers who aren't speakin

g as

 being muted, meaning (a) No encode is done on transmission

and

 (b) Received audio that is not registered as talking is omi

tted

 causing no buildup in background noise

 'p' -- allow user to exit the conference by pressing '#'

 'P' -- always prompt for the pin even if it is specified

 'q' -- quiet mode (don't play enter/leave sounds)

 'r' -- Record conference (records as ${MEETME_RECORDINGFILE}

 using format ${MEETME_RECORDINGFORMAT}). Default filename i

s

 meetme-conf-rec-${CONFNO}-${UNIQUEID} and the default forma

t is

 wav.

 's' -- Present menu (user or admin) when '*' is received ('send' t

o menu)

 't' -- set talk only mode. (Talk only, no listening)

 'T' -- set talker detection (sent to manager interface and meetme

list)

 'w[(<secs>)]'

 -- wait until the marked user enters the conference

 'x' -- close the conference when last marked user exits

 'X' -- allow user to exit the conference by entering a valid singl

e

 digit extension ${MEETME_EXIT_CONTEXT} or the current conte

xt

 if that variable is not defined.

 '1' -- do not play message when first person enters

diff output to internal help in Asterisk 1.2:

8,11c8,11

< MeetMe([confno][,[options][,pin]]): Enters the user into a specified

 MeetMe

< conference. If the conference number is omitted, the user will be pro

mpted

< to enter one. User can exit the conference by hangup, or if the 'p' o

ption

< is specified, by pressing '#'.

> MeetMe([confno][,[options][,pin]]): Enters the user into a specified

 MeetMe conference.

> If the conference number is omitted, the user will be prompted to ente

r

> one.

> User can exit the conference by hangup, or if the 'p' option is specif

ied, by pressing '#'.

20,21c20,21

< Default: conf-background.agi (Note: This does not work w

ith

< non-Zap channels in the same conference)

> Default: conf-background.agi

> (Note: This does not work with non-Zap channels in the sa

me conference)

27,30c27,28

< 'i' -- announce user join/leave with review

< 'I' -- announce user join/leave without review

< 'l' -- set listen only mode (Listen only, no talking)

< 'm' -- set initially muted

> 'i' -- announce user join/leave

> 'm' -- set monitor only mode (Listen only, no talking)

32,35d29

< 'o' -- set talker optimization - treats talkers who aren't speak

ing as

< being muted, meaning (a) No encode is done on transmissio

n and

< (b) Received audio that is not registered as talking is o

mitted

< causing no buildup in background noise

41,42c35

< meetme-conf-rec-${CONFNO}-${UNIQUEID} and the default for

mat is

< wav.

> meetme-conf-rec-${CONFNO}-${UNIQUEID} and the default for

mat is wav.

52d44

< '1' -- do not play message when first person enters

MeetMeAdmin()

Administers a MeetMe conference.

 MeetMeAdmin(conference,command[,participant])
Executes a command in the specified conference. The command may be one of the following (the participant is required only for the kick command (k)):

K
Kicks all participants out of the conference.

k
Kicks participant out of the conference.

e
Kicks the last participant who joined out of the conference.

L
Locks the conference to new participants.

l
Unlocks the conference.

M
Mute a conference participant.

m
Unmute a muted participant.

N
Mute everyone except the conference administrator.

n
Unmute everyone mute by N.

; Mute participant 3 in conference 333

exten => 123,1,MeetMeAdmin(333,M,3)

; Kick participant 3 out of conference 333:

exten => 123,1,MeetMeAdmin(333,k,3)

	[image: image113.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MeetMeAdmin' =-

[Synopsis]

MeetMe conference Administration

[Description]

 MeetMeAdmin(confno,command[,user]): Run admin command for conference

 'e' -- Eject last user that joined

 'k' -- Kick one user out of conference

 'K' -- Kick all users out of conference

 'l' -- Unlock conference

 'L' -- Lock conference

 'm' -- Unmute one user

 'M' -- Mute one user

 'n' -- Unmute all users in the conference

 'N' -- Mute all non-admin users in the conference

 'r' -- Reset one user's volume settings

 'R' -- Reset all users volume settings

 's' -- Lower entire conference speaking volume

 'S' -- Raise entire conference speaking volume

 't' -- Lower one user's talk volume

 'T' -- Raise one user's talk volume

 'u' -- Lower one user's listen volume

 'U' -- Raise one user's listen volume

 'v' -- Lower entire conference listening volume

 'V' -- Raise entire conference listening volume

diff output to internal help in Asterisk 1.2:

14,27c14,17

< 'm' -- Unmute one user

< 'M' -- Mute one user

< 'n' -- Unmute all users in the conference

< 'N' -- Mute all non-admin users in the conference

< 'r' -- Reset one user's volume settings

< 'R' -- Reset all users volume settings

< 's' -- Lower entire conference speaking volume

< 'S' -- Raise entire conference speaking volume

< 't' -- Lower one user's talk volume

< 'T' -- Raise one user's talk volume

< 'u' -- Lower one user's listen volume

< 'U' -- Raise one user's listen volume

< 'v' -- Lower entire conference listening volume

< 'V' -- Raise entire conference listening volume

> 'm' -- Unmute conference

> 'M' -- Mute conference

> 'n' -- Unmute entire conference (except admin)

> 'N' -- Mute entire conference (except admin)

See also. the section called “MeetMe()”, the section called “MeetMeCount()”
MeetMeCount()

Counts the number of participants in a MeetMe conference.

 MeetMeCount(conference[,variablename])
Announces the number of participants in the conference. If the variable name is provided, the announcement is skipped and the count written to this variable.

Returns 0 on success, -1 on error.

; die Teilnehmerzahl der Konferenz 333 in ${anzahl} speichern:

exten => 333,1,MeetMeCount(123,anzahl)

	[image: image114.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MeetMeCount' =-

[Synopsis]

MeetMe participant count

[Description]

 MeetMeCount(confno[|var]): Plays back the number of users in the speci

fied

MeetMe conference. If var is specified, playback will be skipped and the

 value

will be returned in the variable. Upon app completion, MeetMeCount will

hangup

the channel, unless priority n+1 exists, in which case priority progress

 will

continue.

A ZAPTEL INTERFACE MUST BE INSTALLED FOR CONFERENCING FUNCTIONALITY.

diff output to internal help in Asterisk 1.2:

10,12c10,11

< will be returned in the variable. Upon app completion, MeetMeCount wil

l hangup

< the channel, unless priority n+1 exists, in which case priority progre

ss will

< continue.

> will be returned in the variable. Upon app completion, MeetMeCount wil

l hangup the

> channel, unless priority n+1 exists, in which case priority progress w

ill continue.

See also. the section called “MeetMe()”, the section called “MeetMeAdmin()”
Milliwatt()

Generates a 1000 Hz test tone on a channel.

Milliwatt()

Milliwatt tone lines are used by telecommunications carriers for testing and measuring line characteristics. They can be used to check for echo, excessive or inadequate volume, or some kinds of line noise. Standard milliwatt test tones are 1004 Hz at 0 dbm (u-law).

; generate a 1000 Hz Milliwatt test tone:

exten => 123,1,Milliwatt()

	[image: image115.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Milliwatt' =-

[Synopsis]

Generate a Constant 1000Hz tone at 0dbm (mu-law)

[Description]

Milliwatt(): Generate a Constant 1000Hz tone at 0dbm (mu-law)

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Echo()”

MixMonitor()

Records the audio on the current channel but mixes it before writing it to a file.

 MixMonitor(fileprefix.format[,options[,command]])
Starts recording the audio on the current channel. Instead of recording each direction in a separate file the way Monitor() would, mixes the two audio streams on-the-fly and writes the result to the specified file.

Options:

a
Appends the audio stream to an existing file.

b
Saves audio to the file only while the channel is bridged, i.e. once a conversation has actually begun, and only until it is hung up.

v(x)
Adjusts the heard volume by an increment of x (range -4 to 4).

V(x)
Adjusts the spoken volume by an increment of x (range -4 to 4).

W(x)
Adjusts both heard and spoken volume by an increment of x (range -4 to 4).

The command (if provided) is executed after recording. The variable ${MIXMONITOR_FILENAME} is set to the filename used for the recording.

See also additional information in the description to Monitor().

	[image: image116.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MixMonitor' =-

[Synopsis]

Record a call and mix the audio during the recording

[Description]

 MixMonitor(<file>.<ext>[|<options>[|<command>]])

Records the audio on the current channel to the specified file.

If the filename is an absolute path, uses that path, otherwise

creates the file in the configured monitoring directory from

asterisk.conf.

Valid options:

 a - Append to the file instead of overwriting it.

 b - Only save audio to the file while the channel is bridged.

 Note: does not include conferences.

 v(<x>) - Adjust the heard volume by a factor of <x> (range -4 to 4)

 V(<x>) - Adjust the spoken volume by a factor of <x> (range -4 to 4)

 W(<x>) - Adjust the both heard and spoken volumes by a factor of <x>

 (range -4 to 4)

<command> will be executed when the recording is over

Any strings matching ^{X} will be unescaped to ${X} and

all variables will be evaluated at that time.

The variable MIXMONITOR_FILENAME will contain the filename used to recor

d.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Monitor()”

Monitor()

Records the current channel in two separate files.

 Monitor([format[,fileprefix[,options]]])
Starts audio recording on the current channel. Incoming and outgoing audio packets are written to separate files until the channel is hung up or monitoring is stopped with StopMonitor().

The parameter format sets the file format. If this is not specified, wav is used.

The parameter fileprefix specifies the filename without extension. If this is not specified, the filename is assembled out of the channel name and a number, for example, IAX2[foo@bar]-3. Incoming audio is written to fileprefix-in.format, outgoing audio in fileprefix-out.format, both in /var/spool/asterisk/monitor/.

Two options may be specified:

m
After recording is complete, mixes the incoming and outgoing audio files into a single file and deletes the originals. Requires that soxmix from the sox package be installed on the server.[52]If the variable ${MONITOR_EXEC} is defined, this application is executed instead of soxmix and the original incoming and outgoing audio files are not deleted.[53]. soxmix (or ${MONITOR_EXEC} if specified) is passed three values: the names of the incoming and outgoing audio files and the name of the mixed file, which is the fileprefix without -in/-out. If ${MONITOR_EXEC_ARGS} is set, the contents are used as arguments to ${MONITOR_EXEC}.

	[image: image117.png]

	

	
	Note that soxmix attempts to determine the file type based on the file extension. Formats such as gsm and wav are normally not a problem, but for other formats such as alaw and ulaw, it expects the file extensions .al and .ul respectively. To resolve this, read the manual pages for sox (/soxmix) and use ${MONITOR_EXEC_ARGS} or write a small wrapper script that reads the format parameter and call it in ${MONITOR_EXEC}.

	[image: image118.png]

	

	
	If you wanted a single mixed sound file, MixMonitor() is usually the better option, as it mixes on-the-fly and thereby avoids a spike in CPU load at the end of the recording.

b
Saves audio to the file only while the channel is bridged, i.e. once a conversation has actually begun, and only until it is hung up.

Returns 0 on success, or -1 on failure (such as a failure to open the audio files for writing, or the channel is already being monitored, etc.)

; record the conversation and mix the audio afterwards:

exten => 123,1,Answer()

exten => 123,n,Monitor(gsm,,mb)

exten => 123,n,SayDigits(123456789)

exten => 123,n,Hangup()

; as above, only with our own wrapper script that calls soxmix:

exten => 123,1,Answer()

exten => 123,n,Set(MONITOR_EXEC=/path/to/my-soxmix-wrapper.sh)

exten => 123,n,Monitor(gsm,,mb)

exten => 123,n,SayDigits(123456789)

exten => 123,n,Hangup()

	[image: image119.png]

	

	
	Before recording conversations, make sure you are complying with the relevant legislation in your jurisdiction. In most cases, both parties must be aware they are being recorded.[54]

	[image: image120.png]

	

	
	Some Asterisk users who routinely need to record many conversations (50-500) report much better performance if call recordings are written to a RAM disk (fewer and shorter seek operations) before being copied to a hard disk when the conversation is over.

	[image: image121.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Monitor' =-

[Synopsis]

Monitor a channel

[Description]

Monitor([file_format[:urlbase]|[fname_base]|[options]]):

Used to start monitoring a channel. The channel's input and output

voice packets are logged to files until the channel hangs up or

monitoring is stopped by the StopMonitor application.

 file_format optional, if not set, defaults to "wav"

 fname_base if set, changes the filename used to the one specified.

 options:

 m - when the recording ends mix the two leg files into one and

 delete the two leg files. If the variable MONITOR_EXEC is set

, the

 application referenced in it will be executed instead of

 soxmix and the raw leg files will NOT be deleted automatically

.

 soxmix or MONITOR_EXEC is handed 3 arguments, the two leg file

s

 and a target mixed file name which is the same as the leg file

 names

 only without the in/out designator.

 If MONITOR_EXEC_ARGS is set, the contents will be passed on as

 additional arguements to MONITOR_EXEC

 Both MONITOR_EXEC and the Mix flag can be set from the

 administrator interface

 b - Don't begin recording unless a call is bridged to another chan

nel

Returns -1 if monitor files can't be opened or if the channel is already

monitored, otherwise 0.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “ChangeMonitor()”, the section called “StopMonitor()”, the section called “PauseMonitor()”, the section called “UnpauseMonitor()”, the section called “MixMonitor()”, the section called “Record()”

[52] http://sox.sourceforge.net/, see also an explanation in ???, version 12.17.7 or newer. You may check your installed version with soxmix -help
[53] depends on Asterisk version; older versions do not delete automatically. It's best to check with a proper test.

[54] see also http://www.voip-info.org/wiki/view/Monitor+Recording+Legal+Issues
Morsecode()

Transmits the provided string as Morse code.

Morsecode(string)

Plays back the provided string in Morse code.

exten => 123,1,Answer()

exten => 123,n,Morsecode("The dog barks at midnight.")

exten => 123,n,Hangup()

	[image: image122.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Morsecode' =-

[Synopsis]

Plays morse code

[Description]

Usage: Morsecode(<string>)

Plays the Morse code equivalent of the passed string. If the variable

MORSEDITLEN is set, it will use that value for the length (in ms) of the

 dit

(defaults to 80). Additionally, if MORSETONE is set, it will use that t

one

(in Hz). The tone default is 800.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

MP3Player()

Plays an MP3 file or stream.

 MP3Player(filename)
Uses mpg123[55], to play back an MP3 to the caller. The filename may also be a URL. The caller may interrupt playback by pressing any key.

Asterisk is sensitive to the version of mpg123 used. At the time of this writing the most stable version was 0.59r; using other versions may produce unexpected results.

	[image: image123.png]

	

	
	The popular alternative to mpg123, mpg321, does not work reliably with Asterisk.

Returns -1 if the channel is hung up, otherwise returns 0.

; play a local MP3 file:

exten => 123,1,Answer()

exten => 123,n,MP3Player(test.mp3)

; play an MP3 stream:

exten => 123,1,Answer()

exten => 123,n,MP3Player(http://server.tld/test.mp3)

	[image: image124.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MP3Player' =-

[Synopsis]

Play an MP3 file or stream

[Description]

 MP3Player(location) Executes mpg123 to play the given location,

which typically would be a filename or a URL. User can exit by pressing

any key on the dialpad, or by hanging up.

diff output to internal help in Asterisk 1.2:

- none -

[55] http://mpg123.org/, http://sourceforge.net/projects/mpg123/, for Mac OS X see also http://sourceforge.net/projects/mosx-mpg123/
MusicOnHold()

Plays music indefinitely.

MusicOnHold(class)

Plays music belonging to the specified class, as configured in musiconhold.conf. If class is not specified, the default class for the channel is used. To set the default class for the channel, use the function MUSICCLASS().

Returns only -1 when the channel is hung up.

; send telemarketers to this extension and hope they are very patient:

exten => 123,1,Answer()

exten => 123,2,Playback(tt-allbusy)

exten => 123,3,MusicOnHold(default)

exten => 123,4,Goto(2)

	[image: image125.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'MusicOnHold' =-

[Synopsis]

Play Music On Hold indefinitely

[Description]

MusicOnHold(class): Plays hold music specified by class. If omitted, th

e default

music source for the channel will be used. Set the default

class with the SetMusicOnHold() application.

Returns -1 on hangup.

Never returns otherwise.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “WaitMusicOnHold()”, the section called “MUSICCLASS()”
NBScat()

Plays back a local NBS stream.

NBScat()

Uses nbscat8k to retrieve a local NBS (Network Broadcast Sound) stream. (Take a look at the nbs module in Digium's Asterisk CVS for more information.) The caller can exit by pressing any key.

Returns only -1 when the channel is hung up.

exten => 123,1,Answer()

exten => 123,n,NBScat()

	[image: image126.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'NBScat' =-

[Synopsis]

Play an NBS local stream

[Description]

 NBScat: Executes nbscat to listen to the local NBS stream.

User can exit by pressing any key

.

diff output to internal help in Asterisk 1.2:

- none -

NoCDR()

Suppresses generation of a Call Detail Record for the call on the current channel.

 NoCDR()
Suppresses generation of a CDR for the current call.

; no CDR for calls to INWATS directory assistance:

exten => 18005551212,1,Answer()

exten => 18005551212,n,NoCDR()

exten => 18005551212,n,Dial(Zap/4/18005551212)

	[image: image127.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'NoCDR' =-

[Synopsis]

Tell Asterisk to not maintain a CDR for the current call

[Description]

 NoCDR(): This application will tell Asterisk not to maintain a CDR for

 the

current call.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “ForkCDR()”

NoOp()

Does nothing.

 NoOp(text)
This application does absolutely nothing - well, not exactly. You can use NoOp() to print text to the Asterisk CLI, which can be very useful.

The text need not be between quotation marks. If they are entered, they will be printed on the CLI along with the rest of the text.

	[image: image128.png]

	

	
	Text from NoOp() appears on the CLI at verbose level 3 or higher. You can set this in the CLI with set verbose 3 or by invoking the Asterisk CLI with asterisk -vvvr.

exten => 123,1,NoOp(Caller-ID: ${CALLERID})

	[image: image129.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'NoOp' =-

[Synopsis]

Do Nothing

[Description]

 NoOp(): This applicatiion does nothing. However, it is useful for debu

gging

purposes. Any text that is provided as arguments to this application can

 be

viewed at the Asterisk CLI. This method can be used to see the evaluatio

ns of

variables or functions without having any effect.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “DumpChan()”, the section called “Log()”, the section called “Verbose()”
Page()

Pages an extension.

 Page(technology/resource[&technology2/resource2[&...]][,options])
The designated devices are dropped into a dynamically generated conference room with their microphones muted. The only device that can send audio is that of the person paging. When the page is finished the room is struck. Options:

d
Activates full duplex audio.

q
Suppresses the notification tone at the beginning of the page.

r
The page is recorded to a file.

exten => 123,1,Page(SIP/2000&SIP/2001&SIP/2002)

	[image: image130.png]

	

	
	Most devices treat a page like any other call. If the device is not explicitly instructed to auto-answer, it will simply ring, and the intended recipient will not hear the message. SIP devices can be told to auto-answer, often by setting a SIP header. Every device is different; review the administration manuals for your SIP phone and see ???

	[image: image131.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Page' =-

[Synopsis]

Pages phones

[Description]

Page(Technology/Resource&Technology2/Resource2[|options])

 Places outbound calls to the given technology / resource and dumps

them into a conference bridge as muted participants. The original

caller is dumped into the conference as a speaker and the room is

destroyed when the original caller leaves. Valid options are:

 d - full duplex audio

 q - quiet, do not play beep to caller

 r - record the page into a file (see 'r' for app_meetme)

diff output to internal help in Asterisk 1.2:

14,15c14

< q - quiet, do not play beep to caller

< r - record the page into a file (see 'r' for app_meetme)

> q - quiet, do not play beep to caller

Park()

Parks the current call.

 Park(extension)
Parks the active call, typically in combination with an attended transfer so that you can know where the call has been parked. This application is registered internally so it shouldn't be necessary to add it into the dialplan, though you should make sure it is enabled in features.conf. You may include the context with the include => parkedcalls statement.

; park the call in parking space 701:

include => parkedcalls

exten => 123,1,Answer()

exten => 123,n,Park(701)

	[image: image132.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Park' =-

[Synopsis]

Park yourself

[Description]

Park():Used to park yourself (typically in combination with a supervised

transfer to know the parking space). This application is always

registered internally and does not need to be explicitly added

into the dialplan, although you should include the 'parkedcalls'

context (or the context specified in features.conf).

If you set the PARKINGEXTEN variable to an extension in your

parking context, park() will park the call on that extension, unless

it already exists. In that case, execution will continue at next

priority.

diff output to internal help in Asterisk 1.2:

12,17c12

< context (or the context specified in features.conf).

<

< If you set the PARKINGEXTEN variable to an extension in your

< parking context, park() will park the call on that extension, unless

< it already exists. In that case, execution will continue at next

< priority.

> context.

See also. the section called “ParkAndAnnounce()”, the section called “ParkedCall()”
ParkAndAnnounce()

Parks the current call and announces the parking space on the specified channel.

 ParkAndAnnounce(template,timeout,channel[,return-context])
Parks the current call in the parking lot, but announces the parking space on another, specified channel. The template specifies a colon-delimited list of sound files to be played; the word PARKED in the example below is replaced with the parking space number assigned to the parked call. The timeout sets the maximum time the call may be parked before it is placed back in the return-context. The channel denotes the channel on which the announcement is to be made (in our example, Console/dsp prints the announcements to the Asterisk console). The return-context is a label in GoTo() format that determines the context to return the call to if it is not retrieved from the parking lot by a user within the defined timeout window. The default return priority is n+1 in return-context.

include => parkedcalls

exten => 123,1,Answer()

exten => 123,n,ParkAndAnnounce(vm-youhave:a:pbx-transfer:at:vm-extension

:PARKED,120,Console/dsp)

exten => 123,n,Playback(vm-nobodyavail)

exten => 123,n,Playback(vm-goodbye)

exten => 123,n,Hangup()

	[image: image133.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ParkAndAnnounce' =-

[Synopsis]

Park and Announce

[Description]

 ParkAndAnnounce(announce:template|timeout|dial|[return_context]):

Park a call into the parkinglot and announce the call to another channel

.

announce template: Colon-separated list of files to announce. The word

PARKED

 will be replaced by a say_digits of the extension in

which

 the call is parked.

timeout: Time in seconds before the call returns into the retu

rn

 context.

dial: The app_dial style resource to call to make the

 announcement. Console/dsp calls the console.

return_context: The goto-style label to jump the call back into after

 timeout. Default <priority+1>.

The variable ${PARKEDAT} will contain the parking extension into which t

he

call was placed. Use with the Local channel to allow the dialplan to ma

ke

use of this information.

diff output to internal help in Asterisk 1.2:

9,23c9,14

< Park a call into the parkinglot and announce the call to another chann

el.

<

< announce template: Colon-separated list of files to announce. The wor

d PARKED

< will be replaced by a say_digits of the extension i

n which

< the call is parked.

< timeout: Time in seconds before the call returns into the re

turn

< context.

< dial: The app_dial style resource to call to make the

< announcement. Console/dsp calls the console.

< return_context: The goto-style label to jump the call back into aft

er

< timeout. Default <priority+1>.

<

< The variable ${PARKEDAT} will contain the parking extension into which

 the

< call was placed. Use with the Local channel to allow the dialplan to

make

< use of this information.

> Park a call into the parkinglot and announce the call over the console

.

> announce template: colon separated list of files to announce, the word

 PARKED

> will be replaced by a say_digits of the ext the cal

l is parked in

> timeout: time in seconds before the call returns into the return conte

xt.

> dial: The app_dial style resource to call to make the announcement. Co

nsole/dsp calls the console.

> return_context: the goto style label to jump the call back into after

timeout. default=prio+1

See also. the section called “Park()”, the section called “ParkedCall()”
ParkedCall()

Retrieves a parked call.

 ParkedCall(extension)
Connects the channel to a parked call identified by extension. This application is registered internally so it shouldn't be necessary to add it into the dialplan, though you should make sure it is enabled in features.conf. You may include the context with the include => parkedcalls statement.

; retrieve the call parked at 701:

exten => 123,1,Answer()

exten => 123,n,ParkedCall(701)

	[image: image134.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ParkedCall' =-

[Synopsis]

Answer a parked call

[Description]

ParkedCall(exten):Used to connect to a parked call. This application is

 always

registered internally and does not need to be explicitly added

into the dialplan, although you should include the 'parkedcalls'

context.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Park()”, the section called “ParkAndAnnounce()”
PauseMonitor()

Stops monitoring of a channel.

 PauseMonitor()
Stops recording of a channel until it is resumed with UnpauseMonitor().

	[image: image135.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'PauseMonitor' =-

[Synopsis]

Pause monitoring of a channel

[Description]

PauseMonitor

Pauses monitoring of a channel until it is re-enabled by a call to Unpau

seMonitor.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “Monitor()”, the section called “UnpauseMonitor()”, the section called “StopMonitor()”, the section called “ChangeMonitor()”
PauseQueueMember()

Pauses a queue device so that it cannot take calls from the queue.

 PauseQueueMember([queue],interface[,options])
Blocks calls for a queue member until expressly re-enabled, either with UnpauseQueueMember() or through the Manager interface. If no queue is specified, the device is paused in every queue in which it is a member. If a queue is specified but the device is not a member in it, or if no queue is specified and the device does not belong to any queues and option j is set, execution proceeds at priority n+101 if it exists.

Returns 0 on success, otherwise returns -1 if the interface cannot be found or the jump priority does not exist. Sets the channel variable PQMSTATUS to PAUSED or NOTFOUND.

; If we dial *111002, Agent/1002 is paused on all queues where she is a

member:

exten => *11ZXXX,1,PauseQueueMember(,Agent/${EXTEN:3})

; Dialing *121002 unpauses Agent/1002 again:

exten => *12ZXXX,1,UnpauseQueueMember(,Agent/${EXTEN:3})

	[image: image136.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'PauseQueueMember' =-

[Synopsis]

Pauses a queue member

[Description]

 PauseQueueMember([queuename]|interface[|options]):

Pauses (blocks calls for) a queue member.

The given interface will be paused in the given queue. This prevents

any calls from being sent from the queue to the interface until it is

unpaused with UnpauseQueueMember or the manager interface. If no

queuename is given, the interface is paused in every queue it is a

member of. If the interface is not in the named queue, or if no queue

is given and the interface is not in any queue, it will jump to

priority n+101, if it exists and the appropriate options are set.

The application will fail if the interface is not found and no extension

to jump to exists.

The option string may contain zero or more of the following characters:

 'j' -- jump to +101 priority when appropriate.

 This application sets the following channel variable upon completion:

 PQMSTATUS The status of the attempt to pause a queue member as

 a

 text string, one of

 PAUSED | NOTFOUND

Example: PauseQueueMember(|SIP/3000)

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “UnpauseQueueMember()”

Perl()

Executes a Perl function or script.

 Perl(function[:arg1[:arg2[:...]]])
 Perl(loadfile:filename[:arg1[:arg2[:...]]])
	[image: image137.png]

	

	
	Use of Perl() requires the res_perl[56]Asterisk module to be compiled and loaded. As an alternative, you may execute Perl scripts using System().

Executes a function from the Asterisk::Embed Perl module in /usr/local/res_perl/modules/asterisk_init.pm or a specfied Perl script (e.g. demo.pl) from the /usr/local/res_perl/apps/ directory. The advantage of this over shell execution is that the interpreter need not be re-loaded every time, which will improve performance.

The res_perl module is not necessarily compatible with current Asterisk versions and will not be described further in this book.

See also. the section called “System()”, the section called “AGI()”

[56] from http://www.pbxfreeware.org/; more details on its use may be found at http://www.voip-info.org/wiki-Asterisk+cmd+Perl
PHP()

Executes a PHP script.

PHP(filename[|arg1[|arg2[|...]]])

	[image: image138.png]

	

	
	Use of PHP() requires the res_php[57]Asterisk module to be compiled and loaded. As an alternative you may execute PHP scripts using System().

Executes a PHP script. The advantage of this over shell execution is that the interpreter need not be re-loaded every time, which will improve performance.

The res_php module is not compatible with current Asterisk versions and will not be described further in this book.

See also. the section called “System()”, the section called “AGI()”

[57] von http://eder.us/projects/asterisk_php/, Informationen zur Benutzung auf http://www.voip-info.org/wiki-Asterisk+cmd+PHP
Pickup()

Answer a call directed at another extension.

 Pickup(extension[@context][&extension2@context2[&...]])
Pickup() allows a user to answer a channel that is ringing another extension.

exten => 1234,1,Pickup(2000@sales)

	[image: image139.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Pickup' =-

[Synopsis]

Directed Call Pickup

[Description]

 Pickup(extension[@context][&extension2@context...]): This application

can pickup any ringing channel

that is calling the specified extension. If no context is specified, the

 current

context will be used. If you use the special string "PICKUPMARK" for the

 context parameter, for example

10@PICKUPMARK, this application tries to find a channel which has define

d a channel variable with the same content

as "extension".

diff output to internal help in Asterisk 1.2:

8c8

< Pickup(extension[@context][&extension2@context...]): This applicatio

n can pickup any ringing channel

> Pickup(extension[@context]): This application can pickup any ringing

 channel

10,12c10,11

< context will be used. If you use the special string "PICKUPMARK" for t

he context parameter, for example

< 10@PICKUPMARK, this application tries to find a channel which has defi

ned a channel variable with the same content

< as "extension".

> context will be used.

>

Playback()

Plays a sound file to the caller.

 Playback(filename[,options])
Plays filename (in the directory /var/lib/asterisk/sounds/) to the caller. The filename does not include an extension; Asterisk automatically selects the format with the lowest transcoding cost. Options may be specified.

The option skip causes the message to be skipped if the channel is not in the up state.

Answers the channel before the audio file is played, unless noanswer is specified. Note that not alle channels support playback when 'on hook'.

Returns -1 when the channel is hung up. If the file cannot be found, jumps to priority n+101 if it exists.

exten => 123,1,Answer()

exten => 123,n,Playback(tt-weasels)

	[image: image140.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Playback' =-

[Synopsis]

Play a file

[Description]

 Playback(filename[&filename2...][|option]): Plays back given filename

s (do not put

extension). Options may also be included following a pipe symbol. The 's

kip'

option causes the playback of the message to be skipped if the channel

is not in the 'up' state (i.e. it hasn't been answered yet). If 'skip'

 is

specified, the application will return immediately should the channel no

t be

off hook. Otherwise, unless 'noanswer' is specified, the channel will

be answered before the sound is played. Not all channels support playing

messages while still on hook. If 'j' is specified, the application

will jump to priority n+101 if present when a file specified to be playe

d

does not exist.

This application sets the following channel variable upon completion:

 PLAYBACKSTATUS The status of the playback attempt as a text string,

one of

 SUCCESS | FAILED

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Background()”

Playtones()

Plays back one or more tones.

 Playtones(tones)
Plays a list of one or more tones. Playtones() runs in the background, i.e. it will continue to play tones while execution of the dialplan continues. The argument tones is either a tone name as defined in indications.conf or a list of tone frequencies and durations. For an explanation on how to define your own tones, see indications.conf.

Use StopPlaytones() to stop playing tones.

; Two seconds "busy", then two seconds "congestion" tones:

exten => 123,1,Playtones(busy)

exten => 123,n,Wait(2)

exten => 123,n,StopPlaytones()

exten => 123,n,Playtones(congestion)

exten => 123,n,Wait(2)

exten => 123,n,StopPlaytones()

exten => 123,n,Goto(1)

	[image: image141.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'PlayTones' =-

[Synopsis]

Play a tone list

[Description]

PlayTones(arg): Plays a tone list. Execution will continue with the next

 step immediately,

while the tones continue to play.

Arg is either the tone name defined in the indications.conf configuratio

n file, or a directly

specified list of frequencies and durations.

See the sample indications.conf for a description of the specification o

f a tonelist.

Use the StopPlayTones application to stop the tones playing.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “StopPlaytones()”, indications.conf, the section called “Busy()”, the section called “Congestion()”, the section called “Progress()”, the section called “Ringing()”
PrivacyManager()

Requests the input of the caller's telephone number, if caller ID cannot be obtained.

 PrivacyManager([maxRetries[,minLength[,options]]])
If no caller ID is received, the channel is answered and the caller is asked to enter his own telephone number. If caller ID is present on the line, PrivacyManager() has no effect.

The caller has maxRetries (default is 3) number of attempts to provide a valid number of at least minLength (default is 10) digits in length. The default values are set in privacy.conf, which may contain the following entries:

maxretries
The maximum number of times the caller can attempt to enter a number complying with the length limit set by minLength (usually 3).

minlength
The minimum number of digits a number entered must have to be accepted (usually 10).

If you want to prevent PrivacyManager() from reading from the configuration file every time it is called, you can set values in the command in the dialplan.

If option j is set, it jumps to n+101 if the caller fails to provide a valid number within the number of allowed attempts.

The channel variable PRIVACYMGRSTATUS is set to SUCCESS or FAILED and indicates whether the privacy manager was able to get a valid phone number from the caller.

exten => 123,1,Answer()

exten => 123,n,PrivacyManager()

exten => 123,n,GotoIf($["${PRIVACYMGRSTATUS}" = "FAILED"]?pm-failed,1)

exten => 123,n,Dial(Zap/1)

exten => pm-failed,1,Playback(sorry)

exten => pm-failed,n,Playback(vm-goodbye)

	[image: image142.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'PrivacyManager' =-

[Synopsis]

Require phone number to be entered, if no CallerID sent

[Description]

 PrivacyManager([maxretries[|minlength[|options]]]): If no Caller*ID

is sent, PrivacyManager answers the channel and asks the caller to

enter their phone number. The caller is given 3 attempts to do so.

The application does nothing if Caller*ID was received on the channel.

 Configuration file privacy.conf contains two variables:

 maxretries default 3 -maximum number of attempts the caller is allo

wed

 to input a callerid.

 minlength default 10 -minimum allowable digits in the input calleri

d number.

If you don't want to use the config file and have an i/o operation with

every call, you can also specify maxretries and minlength as application

parameters. Doing so supercedes any values set in privacy.conf.

The option string may contain the following character:

 'j' -- jump to n+101 priority after <maxretries> failed attempts to co

llect

 the minlength number of digits.

The application sets the following channel variable upon completion:

PRIVACYMGRSTATUS The status of the privacy manager's attempt to collect

 a phone number from the user. A text string that is ei

ther:

 SUCCESS | FAILED

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Zapateller()”

Progress()

Indicates call progress.

 Progress()
Provides in-band progress indication, if available, to the caller (... so that she knows that "something is happening" :))

Returns 0.

; Indicate progress:

exten => 123,1,Progress()

	[image: image143.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Progress' =-

[Synopsis]

Indicate progress

[Description]

 Progress(): This application will request that in-band progress inform

ation

be provided to the calling channel.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Busy()”, the section called “Congestion()”, the section called “Playtones()”, the section called “Ringing()”
Queue()

Places a call in the specified queue.

 Queue(queue[,options[,URL[,announcement[,timeout[,AGI]]]]])
Passes an incoming call into the specified queue (predefined in queues.conf).

The following options are available and may be combined:

t
Allow the called party to transfer the call.

T
Allow the calling party to transfer the call.

d
Data-quality (modem) call (minimizes delay).

h
Called party may end the call by pressing "*".

H
Calling party may end the call by pressing "*".

n
No retries on timeout; proceeds to the next priority.

r
Rings instead of playing music-on-hold.

i

Ignore call forward requests from queue members; instead do nothing.

w

Allow the called party to record the conversation via Monitor().

W

Allow the calling party to record the conversation via Monitor().

If a call is transferable, it may also be parked and retrieved by another user.

The argument announcement specifies a wait announcement to be played back to the caller at intervals until a queue member answers the call; the default announcement, if there is one, is defined in queues.conf.

The optional URL is sent to the caller if the the calling channel supports it. This could be used on compatible SIP phones to provide queue information to the phone's display panel.

The timeout argument causes the call to fail out of the queue after timeout number of seconds. The default is 300 seconds (or 5 minutes).

Returns -1 if the originating channel is hung up or if the call is connected to a queue member and ended by one of the parties. If the queue is full, does not exist, or has no member, returns 0; execution continues in the next priority in the dialplan.

; pass the caller to the support queue:

exten => 123,1,Answer()

exten => 123,n,Queue(support,t)

	[image: image144.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Queue' =-

[Synopsis]

Queue a call for a call queue

[Description]

 Queue(queuename[|options[|URL][|announceoverride][|timeout][|AGI]):

Queues an incoming call in a particular call queue as defined in queues.

conf.

This application will return to the dialplan if the queue does not exist

, or

any of the join options cause the caller to not enter the queue.

The option string may contain zero or more of the following characters:

 'd' -- data-quality (modem) call (minimum delay).

 'h' -- allow callee to hang up by hitting *.

 'H' -- allow caller to hang up by hitting *.

 'n' -- no retries on the timeout; will exit this application and

 go to the next step.

 'i' -- ignore call forward requests from queue members and do noth

ing

 when they are requested.

 'r' -- ring instead of playing MOH

 't' -- allow the called user transfer the calling user

 'T' -- to allow the calling user to transfer the call.

 'w' -- allow the called user to write the conversation to disk via

 Monitor

 'W' -- allow the calling user to write the conversation to disk vi

a Monitor

 In addition to transferring the call, a call may be parked and then pi

cked

up by another user.

 The optional URL will be sent to the called party if the channel suppo

rts

it.

 The optional AGI parameter will setup an AGI script to be executed on

the

calling party's channel once they are connected to a queue member.

 The timeout will cause the queue to fail out after a specified number

of

seconds, checked between each queues.conf 'timeout' and 'retry' cycle.

 This application sets the following channel variable upon completion:

 QUEUESTATUS The status of the call as a text string, one of

 TIMEOUT | FULL | JOINEMPTY | LEAVEEMPTY | JOINUNAVAIL | LEA

VEUNAVAIL

diff output to internal help in Asterisk 1.2:

8c8

< Queue(queuename[|options[|URL][|announceoverride][|timeout][|AGI]):

> Queue(queuename[|options[|URL][|announceoverride][|timeout]]):

17,19c17

< go to the next step.

< 'i' -- ignore call forward requests from queue members and do no

thing

< when they are requested.

> go to the next step.

29,30d26

< The optional AGI parameter will setup an AGI script to be executed o

n the

< calling party's channel once they are connected to a queue member.

See also. the section called “QueueLog()”, ???
QueueLog()

Writes an entry to the queue log.

 QueueLog(queue,uniqueID,agent,event[,additionalInfo])
Writes an entry to the queue log (usually /var/log/asterisk/queue_log). Lets you define custom events. See ??? for a more complete explanation.

QueueLog(support,${UNIQUEID},${AGENT},LUNCH,Bon appetit)

	[image: image145.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'QueueLog' =-

[Synopsis]

Writes to the queue_log

[Description]

 QueueLog(queuename|uniqueid|agent|event[|additionalinfo]):

Allows you to write your own events into the queue log

Example: QueueLog(101|${UNIQUEID}|${AGENT}|WENTONBREAK|600)

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “Queue()”, ???
Random()

Jumps to a priority randomly.

 Random([probability]:[[context,]extension,]priority)
Jumps to the specified priority, extension and context based on the probability provided, which must be a whole number between 1 and 100; in probability percent of cases, the call will jump to the specified priority.

; Game of chance with 20% chance of winning:

exten => 123,1,Random(20:won,1)

exten => 123,n,Goto(lost,1)

exten => won,1,Playback(hooray)

exten => won,n,Goto(123,1)

exten => lost,1,Playback(sorry)

exten => lost,n,Goto(123,1)

	[image: image146.png]

	

	
	This application is deprecated as of 1.4; use the Asterisk function RAND() instead.

	[image: image147.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Random' =-

[Synopsis]

Conditionally branches, based upon a probability

[Description]

Random([probability]:[[context|]extension|]priority)

 probability := INTEGER in the range 1 to 100

DEPRECATED: Use GotoIf($[${RAND(1,100)} > <number>]?<label>)

diff output to internal help in Asterisk 1.2:

10d9

< DEPRECATED: Use GotoIf($[${RAND(1,100)} > <number>]?<label>)

See also. the section called “RAND()”

Read()

Reads DTMF input from a caller and assigns the result to a variable.

 Read(variable[,filename[,maxDigits[,option[,attempts[,timeout]]]]])
Reads a DTMF sequence ending in "#" from the caller and places it in the specified variable.

If filename is specified (without file extension!), this audio file is played back to the caller before input is read.

The argument maxDigits defines the maximum number of digits allowed. If provided, the application stops reading when this number of digits has been entered, without the caller having to enter "#" to end the call. The default setting is 0 and means there is no preset limit and "#" is expected; the absolute maximum number of digits allowed is 255.

The option skip causes the application to end immediately if the channel is inactive. The option noanswer enables reading even if the channel is inactive.

The caller has up to attempts attempts within timeout seconds to enter a sequence. A timeout of zero means there is no time limit.

Returns -1 if the channel is hung up, otherwise returns 0.

; Read a 4 digit number, allowing up to 3 attempts, and say this number

back to the caller:

exten => 123,1,Read(NUMBER,,4,3)

exten => 123,n,SayNumber(${NUMBER})

exten => 123,n,Goto(1)

	[image: image148.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Read' =-

[Synopsis]

Read a variable

[Description]

 Read(variable[|filename][|maxdigits][|option][|attempts][|timeout])

Reads a #-terminated string of digits a certain number of times from the

user in to the given variable.

 filename -- file to play before reading digits or tone with option i

 maxdigits -- maximum acceptable number of digits. Stops reading after

 maxdigits have been entered (without requiring the user

to

 press the '#' key).

 Defaults to 0 - no limit - wait for the user press the '

#' key.

 Any value below 0 means the same. Max accepted value is

255.

 option -- options are 's' , 'i', 'n'

 's' to return immediately if the line is not up,

 'i' to play filename as an indication tone from your in

dications.conf

 'n' to read digits even if the line is not up.

 attempts -- if greater than 1, that many attempts will be made in th

e

 event no data is entered.

 timeout -- An integer number of seconds to wait for a digit respons

e. If greater

 than 0, that value will override the default timeout.

Read should disconnect if the function fails or errors out.

diff output to internal help in Asterisk 1.2:

12c12

< filename -- file to play before reading digits or tone with option

 i

> filename -- file to play before reading digits.

18,21c18,19

< option -- options are 's' , 'i', 'n'

< 's' to return immediately if the line is not up,

< 'i' to play filename as an indication tone from your

indications.conf

< 'n' to read digits even if the line is not up.

> option -- may be 'skip' to return immediately if the line is not

 up,

> or 'noanswer' to read digits even if the line is not u

p.

24,25c22

< timeout -- An integer number of seconds to wait for a digit respo

nse. If greater

< than 0, that value will override the default timeout.

> timeout -- if greater than 0, that value will override the defaul

t timeout.

See also. the section called “SendDTMF()”

ReadFile()

Reads a file.

 ReadFile(variable=filename,length)
Reads the contents of filename up to length characters into the variable variable.

	[image: image149.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ReadFile' =-

[Synopsis]

ReadFile(varname=file,length)

[Description]

ReadFile(varname=file,length)

 Varname - Result stored here.

 File - The name of the file to read.

 Length - Maximum number of characters to capture.

diff output to internal help in Asterisk 1.2:

- none -

RealTime()

Gets configuration information from the realtime configuration database.

 RealTime(family,column,value[,prefix])
Retrieves configuration settings from the realtime configuration database into channel variables. All unique column names are set as channel variables. Optionally, the argument prefix is prepended to the column name to form the variable name (in the example in the internal help, the prefix var_ to the column name test results in the variable ${var_test}).

Sets the channel variable REALTIMECOUNT to the number of values read.

In extconfig.conf:

; Family => DBMS,database,table

sipusers => mysql,asterisk,sip_users

In extensions.conf:

exten => 123,1,RealTime(sipusers,ext,5678,var_)

This executes the following SQL query in the database asterisk:

SELECT * FROM sip_users WHERE ext = 5678

Assuming the table has the columns firstname and lastname, we can print those values to the CLI this way:

exten => 123,n,NoOp(The first name of the user at ext. 5678 is: ${var_fi

rstname})

exten => 123,n,NoOp(The last name of the user at ext. 5678 is: ${var_las

tname})

	[image: image150.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'RealTime' =-

[Synopsis]

Realtime Data Lookup

[Description]

Use the RealTime config handler system to read data into channel variabl

es.

RealTime(<family>|<colmatch>|<value>[|<prefix>])

All unique column names will be set as channel variables with optional p

refix

to the name. For example, a prefix of 'var_' would make the column 'nam

e'

become the variable ${var_name}. REALTIMECOUNT will be set with the num

ber

of values read.

diff output to internal help in Asterisk 1.2:

11,14c11,13

< All unique column names will be set as channel variables with optional

 prefix

< to the name. For example, a prefix of 'var_' would make the column 'n

ame'

< become the variable ${var_name}. REALTIMECOUNT will be set with the n

umber

< of values read.

> All unique column names will be set as channel variables with optional

 prefix to the name.

> e.g. prefix of 'var_' would make the column 'name' become the variable

 ${var_name}

>

See also. the section called “RealTimeUpdate()”

RealTimeUpdate()

Updates a value in the realtime configuration database.

 RealTimeUpdate(family,column,value,columnUpdate,valueUpdate)
Updates a value in the realtime configuration database. Updates the field columnUpdate with the value valueUpdate in the record matching family, column and value.

; As in our RealTime() example, we can update the record like so:

exten => 123,1,RealTimeUpdate(sipusers,ext,5678,firstname,Richard)

; resulting SQL command:

; UPDATE sip_users SET firstname = 'Richard' WHERE ext = '5678'

	[image: image151.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'RealTimeUpdate' =-

[Synopsis]

Realtime Data Rewrite

[Description]

Use the RealTime config handler system to update a value

RealTimeUpdate(<family>|<colmatch>|<value>|<newcol>|<newval>)

The column <newcol> in 'family' matching column <colmatch>=<value> will

be

updated to <newval>. REALTIMECOUNT will be set with the number of rows

updated or -1 if an error occurs.

diff output to internal help in Asterisk 1.2:

11,13c11

< The column <newcol> in 'family' matching column <colmatch>=<value> wil

l be

< updated to <newval>. REALTIMECOUNT will be set with the number of row

s

< updated or -1 if an error occurs.

> The column <newcol> in 'family' matching column <colmatch>=<value> wil

l be updated to <newval>

See also. the section called “RealTime()”

Record()

Records audio from a channel to a file.

as of Asterisk 1.2:

 Record(basename[.format[,maxSilence[,maxDuration[,options]]]])
Records audio from the channel and saves it in the file basename.format. If the file exists, it is overwritten.

Allowed options are:

format
Specifies the file format of the recording (g723, g729, gsm, h263, ulaw, alaw, wav, ...).

maxSilence
Defines the maximum duration of silence allowed before the recording is ended.

maxDuration
Defines the maximum duration of the recording. If not provided or if 0, there is no limit.

options
One or more of the following option flags may be set:

s
Does not record if the call has not been answered.

n
Does not answer but records even if the call has not been answered.

a
Appends the recording to an existing file instead of overwriting it.

t
The "*" DTMF key ends the call instead of the default "#" key.

q
Does not play a beep tone before recording.

x
Records all DTMF tones, including "#" and "*". The call ends when maxDuration is reached or the caller hangs up.

If basename contains %d, it is replaced by a number incremented by 1 for each new recording.

The caller may end recording by pressing the "#" key; if the caller hangs up before recording is complete, the recording is discarded.

Returns -1 on hang-up, otherwise returns 0.

; Record the caller's name:

exten => 123,1,Playback(please-say-your-name)

exten => 123,n,Record(/tmp/name.gsm,3,10)

exten => 123,n,Playback(/tmp/name)

Note the warnings regarding privacy under Monitor().

	[image: image152.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Record' =-

[Synopsis]

Record to a file

[Description]

 Record(filename.format|silence[|maxduration][|options])

Records from the channel into a given filename. If the file exists it wi

ll

be overwritten.

- 'format' is the format of the file type to be recorded (wav, gsm, etc)

.

- 'silence' is the number of seconds of silence to allow before returnin

g.

- 'maxduration' is the maximum recording duration in seconds. If missing

or 0 there is no maximum.

- 'options' may contain any of the following letters:

 'a' : append to existing recording rather than replacing

 'n' : do not answer, but record anyway if line not yet answered

 'q' : quiet (do not play a beep tone)

 's' : skip recording if the line is not yet answered

 't' : use alternate '*' terminator key (DTMF) instead of default '#

'

 'x' : ignore all terminator keys (DTMF) and keep recording until ha

ngup

If filename contains '%d', these characters will be replaced with a numb

er

incremented by one each time the file is recorded.

Use 'show file formats' to see the available formats on your system

User can press '#' to terminate the recording and continue to the next p

riority.

If the user should hangup during a recording, all data will be lost and

the

application will teminate.

diff output to internal help in Asterisk 1.2:

21,22c21

< 't' : use alternate '*' terminator key (DTMF) instead of default

'#'

< 'x' : ignore all terminator keys (DTMF) and keep recording until

hangup

> 't' : use alternate '*' terminator key instead of default '#'

See also. the section called “Dictate()”, the section called “Monitor()”, the section called “MixMonitor()”
RemoveQueueMember()

Removes queue members dynamically.

 RemoveQueueMember(queue[,interface[,options]])
Removes a member from the queue dynamically. If interface is not provided, the application removes the current interface (i.e., the interface that is active in the current priority) from the specified queue.

If the interface is not in the specified queue and priority n+101 exists, the application jumps to this priority; otherwise returns an error.

Returns -1 on error, otherwise returns 0.

; Remove SIP/3000 from the support queue:

exten => 123,1,RemoveQueueMember(support,SIP/3000)

	[image: image153.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'RemoveQueueMember' =-

[Synopsis]

Dynamically removes queue members

[Description]

 RemoveQueueMember(queuename[|interface[|options]]):

Dynamically removes interface to an existing queue

If the interface is NOT in the queue and there exists an n+101 priority

then it will then jump to this priority. Otherwise it will return an er

ror

The option string may contain zero or more of the following characters:

 'j' -- jump to +101 priority when appropriate.

 This application sets the following channel variable upon completion:

 RQMSTATUS The status of the attempt to remove a queue member a

s a

 text string, one of

 REMOVED | NOTINQUEUE | NOSUCHQUEUE

Example: RemoveQueueMember(techsupport|SIP/3000)

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “AddQueueMember()”, the section called “Queue()”, queues.conf
ResetCDR()

Resets the Call Detail Record.

 ResetCDR([options])
Resets the Call Detail Record for the active call. If option w is given, the existing CDR is stored before the reset.

Returns 0.

; save the current CDR and then reset it:

exten => 123,1,Answer()

exten => 123,n,Playback(tt-monkeys)

exten => 123,n,ResetCDR(w)

exten => 123,n,Playback(tt-monkeys)

	[image: image154.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ResetCDR' =-

[Synopsis]

Resets the Call Data Record

[Description]

 ResetCDR([options]): This application causes the Call Data Record to

be

reset.

 Options:

 w -- Store the current CDR record before resetting it.

 a -- Store any stacked records.

 v -- Save CDR variables.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “ForkCDR()”, the section called “NoCDR()”
RetryDial()

Attemps to dial and retries if the attempt fails.

 RetryDial(announcement,sleep,retries,technology/resource[&technology2/resource2...][,timeout[,options[,URL]]])
Attempts, like Dial(), to call a device. Plays the file announcement (without file extension!) if no device can be reached, then waits sleep seconds before trying again. The default sleep interval is 10 seconds. After retries retries, the call is handed to the next priority in the dialplan. If retries is set to 0 or -1, the application retries indefinitely.

A single-digit extension may be dialed by the caller during the sleep interval. If this extension exists in the context defined by ${EXITCONTEXT} or in the current context, the call is passed to that extension.

All arguments following retries are passed to directly to Dial().

; Try to dial the number three times, repeat after 5 seconds:

exten => 123,1,RetryDial(trying-to-connect-you,5,3,IAX2/VOIP/18005554148

,30)

; If the caller presses 4 while waiting, try the call on Zap/4:

exten => 0,1,RetryDial(trying-to-connect-you,5,3,Zap/4/18005554148,30)

	[image: image155.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'RetryDial' =-

[Synopsis]

Place a call, retrying on failure allowing optional exit extension.

[Description]

 RetryDial(announce|sleep|retries|dialargs): This application will atte

mpt to

place a call using the normal Dial application. If no channel can be rea

ched,

the 'announce' file will be played. Then, it will wait 'sleep' number of

seconds before retying the call. After 'retires' number of attempts, the

calling channel will continue at the next priority in the dialplan. If t

he

'retries' setting is set to 0, this application will retry endlessly.

 While waiting to retry a call, a 1 digit extension may be dialed. If t

hat

extension exists in either the context defined in ${EXITCONTEXT} or the

current

one, The call will jump to that extension immediately.

 The 'dialargs' are specified in the same format that arguments are pro

vided

to the Dial application.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Dial()”

Return()

Returns from a subroutine.

 Return()
Returns from a subroutine called by Gosub() or GosubIf() to the priority immediately following the Gosub() or GosubIf() that called the subroutine.

exten => 123,1,Playback(tt-monkeys)

exten => 123,n,Gosub(my-subroutine,s,1)

exten => 123,n,Playback(tt-monkeys)

exten => 123,n,Hangup()

[my-subroutine]

exten => s,1,Playback(tt-weasels)

exten => s,n,Return()

	[image: image156.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Return' =-

[Synopsis]

Return from gosub routine

[Description]

Return()

 Jumps to the last label on the stack, removing it.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Gosub()”, the section called “GosubIf()”
Ringing()

Indicates ringing to the caller.

 Ringing()
Indicates ringing to the caller. What form this indication takes depends on the channel driver. Note that this does not necessarily result in ringing tones; if you absolutely need those, use Playtones().

Returns 0.

; Fake ringing:

exten => 123,1,Ringing()

exten => 123,n,Wait(5)

exten => 123,n,Playback(tt-somethingwrong)

	[image: image157.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Ringing' =-

[Synopsis]

Indicate ringing tone

[Description]

 Ringing(): This application will request that the channel indicate a r

inging

tone to the user.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Busy()”, the section called “Congestion()”, the section called “Progress()”, the section called “Ringing()”, the section called “Playtones()”
SayAlpha()

Spells out a string to the caller.

 SayAlpha(string)
Spells out the specified string to the caller according to the language setting for that channel. The language may be set with the Asterisk function LANGUAGE().

exten => 123,1,SayAlpha(ABC123)

	[image: image158.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SayAlpha' =-

[Synopsis]

Say Alpha

[Description]

 SayAlpha(string): This application will play the sounds that correspon

d to

the letters of the given string.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “SayDigits()”, the section called “SayNumber()”, the section called “SayPhonetic()”
SayDigits()

Says a sequence of digits to the caller.

 SayDigits(digits)
Says the provided sequence of digits to the caller according to the language settings for the channel. The language may be set with the Asterisk function LANGUAGE().

exten => 123,1,SayDigits(1234)

	[image: image159.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SayDigits' =-

[Synopsis]

Say Digits

[Description]

 SayDigits(digits): This application will play the sounds that correspo

nd

to the digits of the given number. This will use the language that is cu

rrently

set for the channel. See the LANGUAGE function for more information on s

etting

the language for the channel.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “SayAlpha()”, the section called “SayNumber()”, the section called “SayPhonetic()”
SayNumber()

Says a number.

 SayNumber(number[,gender])
Says the provided number according to the language settings for the channel. The language may be set with the Asterisk function LANGUAGE().

Whole numbers from one to 99,999,999 are supported in the following languages:

da
Danish

de
German

en
English

es
Spanish

fr
French

it
Italian

nl
Dutch

no
Norwegian

pl
Polish

pt
Portugese

se
Swedish

tw
Mandarin (Taiwanese)

The gender is optional and depends on the language.

For continental languages such as German, French, Spanish and Portugese, use f für feminine, m for masculine, and n for neuter.

For Scandinavian languages such as Danish, Swedish and Norwegian, use c for common (en, enn) and n for neuter (et, ett).

To count in German plural, use p.

For these other languages to work, their respective sound files must be present /var/lib/asterisk/sounds/digits/ (in subdirectories by language, e.g. de/).

; Say in English:

exten => 123,1,Set(LANGUAGE=en)

exten => 123,n,SayNumber(1234)

; "one - thousand - two - hundred - and - thirty - four"

; Say in Norwegian:

exten => 123,1,Set(LANGUAGE=no)

exten => 123,n,SayNumber(1234)

; "tusen - to - hundre - tretti - fire"

	[image: image160.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SayNumber' =-

[Synopsis]

Say Number

[Description]

 SayNumber(digits[,gender]): This application will play the sounds that

correspond to the given number. Optionally, a gender may be specified.

This will use the language that is currently set for the channel. See th

e

LANGUAGE function for more information on setting the language for the c

hannel.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “SayAlpha()”, the section called “SayDigits()”, the section called “SayPhonetic()”
SayPhonetic()

Spells a string using the NATO phonetic alphabet.

 SayPhonetic(string)
Spells out the provided string using the NATO phonetic alphabet or its linguistic variations. The language may be set with the Asterisk function LANGUAGE(). Umlauts and other special characters are not yet supported.

exten => 123,1,Set(LANGUAGE=en)

exten => 123,n,SayPhonetic(asterisk)

; Alpha Sierra Tango Echo Romeo India Sierra Kilo

exten => 123,n,Set(LANGUAGE=de)

exten => 123,n,SayPhonetic(asterisk)

; Anton Samuel Theodor Emil Richard Ida Samuel Kaufmann

	[image: image161.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SayPhonetic' =-

[Synopsis]

Say Phonetic

[Description]

 SayPhonetic(string): This application will play the sounds from the ph

onetic

alphabet that correspond to the letters in the given string.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “SayAlpha()”, the section called “SayDigits()”, the section called “SayNumber()”
SayUnixTime()

Announce the time in a custom format.

 SayUnixTime([unixtime][,timezone[,format]])
Announces the current time according to the specified time zone and format. Allowed options are:

unixtime
The time in Unix time format, i.e. the number of seconds that have passed since the start of the epoch, which began at 0:00 UTC, January 1st, 1970. Accepts negative values. The default value is the current time.

timezone
The time zone. A list may be found in /usr/share/zoneinfo/. The default is the system time zone.

format
The time format of the announcement. A list of allowed formats may be found in voicemail.conf from the default installation. The default time format is ABdY 'digits/at' IMp.

Returns 0 or -1 if the channel is hung up.

exten => 123,1,SayUnixTime(,,IMp)

	[image: image162.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SayUnixTime' =-

[Synopsis]

Says a specified time in a custom format

[Description]

SayUnixTime([unixtime][|[timezone][|format]])

 unixtime: time, in seconds since Jan 1, 1970. May be negative.

 defaults to now.

 timezone: timezone, see /usr/share/zoneinfo for a list.

 defaults to machine default.

 format: a format the time is to be said in. See voicemail.conf.

 defaults to "ABdY 'digits/at' IMp"

diff output to internal help in Asterisk 1.2:

- none -

SendDTMF()

Send DTMF digits on the channel.

 SendDTMF(digits[,timeout_ms])
Sends the specified DTMF sequence on the channel. Permitted symbols are 0-9, *, # and A-D. Additionally w is allowed; it indicates a pause of 500 ms. The argument timeout_ms sets the pause in milliseconds between tones. If not specified, defaults to 250 ms.

Returns 0, or -1 if the channel is hung up.

exten => 123,1,SendDTMF(123w456w789,200)

	[image: image163.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SendDTMF' =-

[Synopsis]

Sends arbitrary DTMF digits

[Description]

 SendDTMF(digits[|timeout_ms]): Sends DTMF digits on a channel.

 Accepted digits: 0-9, *#abcd, w (.5s pause)

 The application will either pass the assigned digits or terminate if it

 encounters an error.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Read()”

SendImage()

Sends an image file to the channel.

 SendImage(filename[,options])
Sends an image file to the channel. If images are supported and the transmission fails, the application hangs up; otherwise it continues on the next priority. If option j is set, the application jumps to priority n+101, if it exists.

Returns 0 on successful transmission of the image or if the channel does not support images, otherwise returns -1. Sets the channel variable SENDIMAGESTATUS to OK or NOSUPPORT.

exten => 123,1,SendImage(logo.jpg)

	[image: image164.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SendImage' =-

[Synopsis]

Send an image file

[Description]

 SendImage(filename): Sends an image on a channel.

If the channel supports image transport but the image send

fails, the channel will be hung up. Otherwise, the dialplan

continues execution.

The option string may contain the following character:

 'j' -- jump to priority n+101 if the channel doesn't support image tran

sport

This application sets the following channel variable upon completion:

 SENDIMAGESTATUS The status is the result of the attempt as a text stri

ng, one of

 OK | NOSUPPORT

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “SendText()”, the section called “SendURL()”
SendText()

Sends text to the channel.

 SendText(text[,option])
Sends text to the channel (e.g. to print on the display) if the transmission of text is supported by the channel and the device. The channel is handed to the next priority afterwards. If text transmission is not supported, option j makes the channel jump to priority n+101 if it exists.

The text is 7 bit ASCII for most channels.

Returns 0 if the text is transmitted without errors, otherwise -1. Sets the channel variable SENDTEXTSTATUS to SUCCESS, FAILURE or UNSUPPORTED.

exten => 123,1,SendText(Welcome to Asterisk)

	[image: image165.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SendText' =-

[Synopsis]

Send a Text Message

[Description]

 SendText(text[|options]): Sends text to current channel (callee).

Result of transmission will be stored in the SENDTEXTSTATUS

channel variable:

 SUCCESS Transmission succeeded

 FAILURE Transmission failed

 UNSUPPORTED Text transmission not supported by channel

At this moment, text is supposed to be 7 bit ASCII in most channels.

The option string many contain the following character:

'j' -- jump to n+101 priority if the channel doesn't support

 text transport

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “SendImage()”, the section called “SendURL()”
SendURL()

Sends a URL to the channel.

 SendURL(URL[,options])
Sends the channel a URL for the device to call up, then hands the channel to the next priority.

If the channel does not support URL transmission, option j makes the channel jump to priority n+101 if it exists. Option wait makes the application wait for confirmation that the URL was loaded before continuing to the next priority.

Returns 0 if the URL is transmitted without errors, otherwise -1. Sets the channel variable SENDURLSTATUS to SUCCESS, FAILURE, UNSUPPORTED or NOLOAD (requires option wait; the client could not load the URL successfully).

exten => 123,1,SendURL(http://www.mobileweather.org/index.xml,wait)

	[image: image166.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SendURL' =-

[Synopsis]

Send a URL

[Description]

 SendURL(URL[|option]): Requests client go to URL (IAX2) or sends the

URL to the client (other channels).

Result is returned in the SENDURLSTATUS channel variable:

 SUCCESS URL successfully sent to client

 FAILURE Failed to send URL

 NOLOAD Client failed to load URL (wait enabled)

 UNSUPPORTED Channel does not support URL transport

If the option 'wait' is specified, execution will wait for an

acknowledgement that the URL has been loaded before continuing

If jumping is specified as an option (the 'j' flag), the client does not

support Asterisk "html" transport, and there exists a step with priority

n + 101, then execution will continue at that step.

SendURL continues normally if the URL was sent correctly or if the chann

el

does not support HTML transport. Otherwise, the channel is hung up.

diff output to internal help in Asterisk 1.2:

13c13

< NOLOAD Client failed to load URL (wait enabled)

> NOLOAD Clien failed to load URL (wait enabled)

17a18

> and will return -1 if the peer is unable to load the URL

19,24c20,26

< If jumping is specified as an option (the 'j' flag), the client does n

ot

< support Asterisk "html" transport, and there exists a step with priori

ty

< n + 101, then execution will continue at that step.

<

< SendURL continues normally if the URL was sent correctly or if the cha

nnel

< does not support HTML transport. Otherwise, the channel is hung up.

> Old behaviour (deprecated):

> If the client does not support Asterisk "html" transport,

> and there exists a step with priority n + 101, then execution will

> continue at that step.

> Otherwise, execution will continue at the next priority level.

> SendURL only returns 0 if the URL was sent correctly or if

> the channel does not support HTML transport, and -1 otherwise.

See also. the section called “SendImage()”, the section called “SendText()”
Set()

Sets a variable to the specified value.

 Set(variable=value[,variable2=value2,...][,options])
Sets the variable to the specified value. If the variable name starts with "_", single inheritance is set (i.e. the variable is inherited by any channels opened from this channel); if it begins with "__", unlimited inheritance is set (i.e. all children of this channel, regardless of generation, inherit the variable). Up to 24 variables may be set. Variables are valid only in the channel and are cancelled when the channel is hung up. Option g sets a global variable in Asterisk 1.2; in 1.4 this is accomplished with the Asterisk function GLOBAL().

; Set a variable TEST to "123":

exten => 123,1,Set(TEST=123)

exten => 123,n,SayDigits(${TEST})

; Set a global variable TEST2 to "456":

exten => 123,n,Set(TEST2=456,g) ; Asterisk 1.2

exten => 123,n,Set(GLOBAL(TEST2)=456) ; Asterisk 1.4

	[image: image167.png]

	

	
	Whether global variables are cleared upon reload depends on the setting of clearglobalvars in extensions.conf.

Set() is also used to write to functions (see Appendix C, Functions in the dialplan).

exten => 123,1,Set(CALLERID(name)=Widgets) ; set CALLERID(name)

exten => 123,n,Set(CALLERID(name)=) ; clear CALLERID(name)

exten => 123,n,Set(DB(my/test)=ok) ; write a value to the AstDB

exten => 123,n,Set(var=${DB(my/test)}) ; read a value from the AstDB

	[image: image168.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Set' =-

[Synopsis]

Set channel variable(s) or function value(s)

[Description]

 Set(name1=value1|name2=value2|..[|options])

This function can be used to set the value of channel variables or dialp

lan

functions. It will accept up to 24 name/value pairs. When setting variab

les,

if the variable name is prefixed with _, the variable will be inherited

into

channels created from the current channel. If the variable name is prefi

xed

with __, the variable will be inherited into channels created from the c

urrent

channel and all children channels.

 Options:

 g - Set variable globally instead of on the channel

 (applies only to variables, not functions)

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “ImportVar()”, doc/README.variables (1.2) / doc/channelvariables.txt (1.4), the section called “GLOBAL()”
SetAMAFlags()

Sets AMA-Flags in the Call Detail Record (CDR).

 SetAMAFlags(flags)
Sets AMA (Automatic Message Accounting)[58] flags in the CDR. Overrides any settings found in channel configuration files. Valid settings are default, omit, billing and documentation.

Returns 0.

exten => 123,1,SetAMAFlags(billing)

	[image: image169.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SetAMAFlags' =-

[Synopsis]

Set the AMA Flags

[Description]

 SetAMAFlags([flag]): This application will set the channel's AMA Flags

 for

 billing purposes.

diff output to internal help in Asterisk 1.2:

8,9c8,9

< SetAMAFlags([flag]): This application will set the channel's AMA Fla

gs for

< billing purposes.

> SetAMAFlags([flag]): This channel will set the channel's AMA Flags f

or billing

> purposes.

[58] In North America, Automatic Message Accounting has been used for billing in Direct Distance Dialing since it was introduced in the mid-20th century. The system was originally used to provide the toll system with information about the originating circuit so that the subscriber could be billed for a long distance call.

SetCallerPres()

Sets caller ID presentation flags.

 SetCallerPres(presentation)
Sets caller ID presentation flags for Q.931 PRI (Primary Rate Interface) connections. Similar to CallerPres(), but using words instead of a bitmask.

Valid presentations are:

allowed_not_screened
Presentation allowed, not screened.

allowed_passed_screen
Presentation allowed, passed screen.

allowed_passed_screen
Presentation allowed, failed screen.

allowed
Presentation allowed, network number.

prohib_not_screened
Presentation prohibited, not screened.

prohib_passed_screen
Presentation prohibited, passed screen.

prohib_failed_screen
Presentation prohibited, failed screen.

prohib
Presentation prohibited, network number.

unavailable
Number unavailable.

Returns 0.

exten => 123,1,SetCallerPres(allowed_not_screened)

exten => 123,n,Dial(Zap/4/18775558190)

You may need to set usecallingpres=yes in zapata.conf for this to work.

	[image: image170.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SetCallerPres' =-

[Synopsis]

Set CallerID Presentation

[Description]

 SetCallerPres(presentation): Set Caller*ID presentation on a call.

 Valid presentations are:

 allowed_not_screened : Presentation Allowed, Not Screened

 allowed_passed_screen : Presentation Allowed, Passed Screen

 allowed_failed_screen : Presentation Allowed, Failed Screen

 allowed : Presentation Allowed, Network Number

 prohib_not_screened : Presentation Prohibited, Not Screened

 prohib_passed_screen : Presentation Prohibited, Passed Screen

 prohib_failed_screen : Presentation Prohibited, Failed Screen

 prohib : Presentation Prohibited, Network Number

 unavailable : Number Unavailable

diff output to internal help in Asterisk 1.2:

- none -

SetCDRUserField()

Sets the value of the "user" in the CDR.

 SetCDRUserField(string)
Sets the value of the "user" in the CDR. This field allows non-standard information to be recorded in the CDR.

	[image: image171.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SetCDRUserField' =-

[Synopsis]

Set the CDR user field

[Description]

[Synopsis]

SetCDRUserField(value)

[Description]

SetCDRUserField(value): Set the CDR 'user field' to value

 The Call Data Record (CDR) user field is an extra field you

 can use for data not stored anywhere else in the record.

 CDR records can be used for billing or storing other arbitrary da

ta

 (I.E. telephone survey responses)

 Also see AppendCDRUserField().

diff output to internal help in Asterisk 1.2:

- none -

	[image: image172.png]

	

	
	Though it is not noted in the internal help, this application is deprecated. See the source code:

ast_log(LOG_WARNING, "SetCDRUserField is deprecated. Please use CDR(use

rfield) instead.\n");

See also. the section called “CDR()”

SetGlobalVar()

Sets the value of a global variable.

 SetGlobalVar(variable=value)
Sets the value of a global variable. If the variable does not exist, it is created.

	[image: image173.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SetGlobalVar' =-

[Synopsis]

Set a global variable to a given value

[Description]

 SetGlobalVar(variable=value): This application sets a given global var

iable to

the specified value.

diff output to internal help in Asterisk 1.2:

- none -

	[image: image174.png]

	

	
	Though it is not noted in the internal help, this application is deprecated. See the source code:

ast_log(LOG_WARNING, "SetGlobalVar is deprecated. Please use Set(GLOBAL

(%s)=%s) instead.\n", name, stringp);

See also. the section called “Set()”, the section called “GLOBAL()”
SetMusicOnHold()

Sets the default class for Music On Hold (MOH).

 SetMusicOnHold(class)
Sets the default class for Music On Hold (MOH).

	[image: image175.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SetMusicOnHold' =-

[Synopsis]

Set default Music On Hold class

[Description]

SetMusicOnHold(class): Sets the default class for music on hold for a gi

ven channel. When

music on hold is activated, this class will be used to select which

music is played.

diff output to internal help in Asterisk 1.2:

- none -

	[image: image176.png]

	

	
	Superseded by the Asterisk function CHANNEL(musicclass) in 1.4 and above.

See also. the section called “CHANNEL()”

SetTransferCapability()

Sets the ISDN transfer capability.

 SetTransferCapability(transferCapability)
Allowed values:

SPEECH
0x00 - Speech (default, voice calls)

DIGITAL
0x08 - Unrestricted digital information (data calls)

RESTRICTED_DIGITAL
0x09 - Restricted digital information

3K1AUDIO
0x10 - 3.1 kHz Audio (fax calls)

DIGITAL_W_TONES
0x11 - Unrestricted digital information with tones/announcements

VIDEO
0x18 - Video

	[image: image177.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SetTransferCapability' =-

[Synopsis]

Set ISDN Transfer Capability

[Description]

 SetTransferCapability(transfercapability): Set the ISDN Transfer

Capability of a call to a new value.

Valid Transfer Capabilities are:

 SPEECH : 0x00 - Speech (default, voice calls)

 DIGITAL : 0x08 - Unrestricted digital information (data cal

ls)

 RESTRICTED_DIGITAL : 0x09 - Restricted digital information

 3K1AUDIO : 0x10 - 3.1kHz Audio (fax calls)

 DIGITAL_W_TONES : 0x11 - Unrestricted digital information with tone

s/announcements

 VIDEO : 0x18 - Video

diff output to internal help in Asterisk 1.2:

17c17

< VIDEO : 0x18 - Video

> VIDEO : 0x18 - Video:

SIPAddHeader()

Adds a SIP header to the SIP dialog.

SIPAddHeader(header: value)

Adds a SIP header as specified to SIP calls initiated using Dial(). Non-standard SIP headers should be preceded with an X- as in X-Asterisk-Accountcode:.

Should be used with caution as different SIP devices expect different headers and respond differently to them. May produce unexpected behavior.

Returns 0.

exten => 123,1,SIPAddHeader(X-Asterisk-Account: ${CDR(accountcode)})

exten => 123,n,Dial(SIP/123)

	[image: image178.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SIPAddHeader' =-

[Synopsis]

Add a SIP header to the outbound call

[Description]

 SIPAddHeader(Header: Content)

Adds a header to a SIP call placed with DIAL.

Remember to user the X-header if you are adding non-standard SIP

headers, like "X-Asterisk-Accountcode:". Use this with care.

Adding the wrong headers may jeopardize the SIP dialog.

Always returns 0

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “SIP_HEADER()”

SIPdtmfMode()

Changes the DTMF mode for SIP calls.

 SIPdtmfMode(mode)
Changes the DTMF mode for outgoing SIP calls. DTMF can be signalled out-of-band using rfc2833, inband using inband (RTP), or out-of-band using info (RFC 2976).

exten => 123,n,SIPdtmfMode(rfc2833)

	[image: image179.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SIPDtmfMode' =-

[Synopsis]

Change the dtmfmode for a SIP call

[Description]

SIPDtmfMode(inband|info|rfc2833): Changes the dtmfmode for a SIP call

diff output to internal help in Asterisk 1.2:

- none -

See also. RFC 2833[59], RFC 2976[60]

[59] http://www.ietf.org/rfc/rfc2833.txt

[60] http://www.ietf.org/rfc/rfc2976.txt

SMS()

Sends or receives SMS (Short Message System) messages.

 SMS(queue[,options])
Manages the exchange of SMS messages with an SMS-capable telephone or through an SMS service center supporting ETSI ES 201 912[61]SMS protocol on analog or ISDN lines. Because the shell client smsq uses FSK[62]this is unlikely to work over compressed codecs such as GSM.

Options:

a

Act as recipient.

s

Act as transmitter (SMS service center) to communicate with a telephone set.

All send and receive queues are stored in /var/spool/asterisk/sms/: message coming from the service center to the device in sc-me.queue/, the message from the device to the service center in me-sc.queue/. A log is written to /var/log/asterisk/sms.

When connecting as a recipient (a), messages residing in me-sc.queue/ are sent and then deleted; received messages are written to sc-me.queue/ with a timestamp in the filename. When connecting as a transmitter (SMS service center), the reverse is true.

Message files are in the format described below. Absent parameters imply a default:

oa=Originating Address (sender's number)
This contains the complete national direct-dial number, including country code and preceded by the +. For example, +19255554101 would be a valid number.

da=Destination Address (recipient's number)
Again, a complete national direct-dial number with preceding +.

scts=Service Centre Time Stamp (timestamp)
Uses the format YYYY-MM-DD HH:MM:SS

pid=Protocol Identifier (decimal octet value)
dcs=Data coding scheme (decimal octet value)
mr=Message reference (decimal octet value)
ud=Message Text
If characters other than 10, 13, 32-126, 128-255 (decimal) occur in the message, ud= is replaced by ud# and the message contents are coded in hexadecimal.

srr=Status Report Request (0|1)
rp=Return Path (0|1)
vp=Validity Period (minutes)
When sending to an SMSC, only da and ud are used; oa is ignored. When sending to a device, only oa and ud are necessary; da is ignored.

An extension for receiving SMS messages might look like this (where 4165553331 is the number of our SMSC):

[incoming]

exten => _X.,1,GotoIf($["${CALLERIDNUM}" = "4165553331"]?sms-me-in,${EXT

EN},1)

; oder so:

;exten => _X./_0193010.,1,Goto(sms-me-in,${EXTEN},1)

[sms-me-in]

exten => _X.,1,Wait(1)

exten => _X.,n,SMS(me-incoming,a)

exten => _X.,n,System(handleincomingsms)

exten => _X.,n,Hangup()

where handleincomingsms might be a wrapper or command containing, for example, smsq --process=queue --queue=me-incoming which is executed for each incoming message.

Outgoing messages are written to files, but may also be generated with the following (outdated) sequence (4165553331 is the number of the SMSC):

[outgoing]

exten = 4165553331,1,Goto(sms-me-out,${CALLERIDNUM},1)

[sms-me-out]

exten => _X.,1,Set(CDR(accountcode)=SMS)

exten => _X.,n,Set(smsFrom=${CALLERIDNUM})

exten => _X.,n,SMS(${smsFrom},s,${EXTEN},${smsText}) ; Generate SMS

exten => _X.,n,SMS(${smsFrom},s) ; Send SMS

exten => _X.,n,Hangup()

Further information and many additional examples may be found at http://www.voip-info.org/wiki/view/Asterisk+cmd+Sms. With the extremely wide variation in SMS implementation, it is best not to expect SMS() to work right "out of the box."

	[image: image180.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SMS' =-

[Synopsis]

Communicates with SMS service centres and SMS capable analogue phones

[Description]

 SMS(name|[a][s]): SMS handles exchange of SMS data with a call to/fro

m SMS capabale

phone or SMS PSTN service center. Can send and/or receive SMS messages.

Works to ETSI ES 201 912 compatible with BT SMS PSTN service in UK

Typical usage is to use to handle called from the SMS service centre CLI

,

or to set up a call using 'outgoing' or manager interface to connect

service centre to SMS()

name is the name of the queue used in /var/spool/asterisk/sms

Arguments:

 a: answer, i.e. send initial FSK packet.

 s: act as service centre talking to a phone.

Messages are processed as per text file message queues.

smsq (a separate software) is a command to generate message

queues and send messages.

diff output to internal help in Asterisk 1.2:

- none -

[61] ETSI: European Telecommunications Standards Institute

[62] Frequency Shift Keying, ???
SoftHangup()

Hangs up the specified channel.

SoftHangup(technology/resource[,options])

Hangs up the specified channel. Returns 0. Allowed options include a, which hangs up all channels on the specified device, not just a single resource.

; hang up all channels using Zap/4:

exten => 123,1,SoftHangup(Zap/4,a)

exten => 123,n,Wait(2)

exten => 123,n,Dial(Zap/4/6045551538)

	[image: image181.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'SoftHangup' =-

[Synopsis]

Soft Hangup Application

[Description]

 SoftHangup(Technology/resource|options)

Hangs up the requested channel. If there are no channels to hangup,

the application will report it.

- 'options' may contain the following letter:

 'a' : hang up all channels on a specified device instead of a singl

e resource

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Hangup()”

StopMonitor()

Stops recording of a channel.

 StopMonitor()
Stops recording of a channel. Has no effect if the channel is not currently monitored.

exten => 123,1,Answer()

exten => 123,n,Monitor(wav,monitor_test,mb)

exten => 123,n,SayDigits(12345678901234567890)

exten => 123,n,StopMonitor()

	[image: image182.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'StopMonitor' =-

[Synopsis]

Stop monitoring a channel

[Description]

StopMonitor

Stops monitoring a channel. Has no effect if the channel is not monitore

d

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Monitor()”, the section called “PauseMonitor()”
StopPlaytones()

Interrupts playback of a tone list.

 StopPlaytones()
Stops playback of a currently playing tone list.

exten => 123,1,Playtones(busy)

exten => 123,n,Wait(2)

exten => 123,n,StopPlaytones()

exten => 123,n,Playtones(congestion)

exten => 123,n,Wait(2)

exten => 123,n,StopPlaytones()

exten => 123,n,Goto(1)

	[image: image183.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'StopPlayTones' =-

[Synopsis]

Stop playing a tone list

[Description]

Stop playing a tone list

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Playtones()”, indications.conf
System()

Executes a shell command.

 System(command)
Uses the C system() function to execute a command on the system shell (sh or its equivalents).

This is very similar to TrySystem() except that it returns -1 if it is unable to run the system command where as TrySystem() always returns 0.

Sets the channel variable SYSTEMSTATUS to SUCCESS, FAILURE or APPERROR (this is undocumented; the command was executed but returned an exit code other than zero).

exten => s,1,System(echo '${DATETIME} - ${CALLERID} - ${CHANNEL}' >> /va

r/log/asterisk/anrufe)

See also. the section called “TrySystem()”

	[image: image184.png]

	

	
	An alternative is Backticks() application or the function BACKTICKS() from the app_backticks module.[63]This returns the output of the command.

	[image: image185.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'System' =-

[Synopsis]

Execute a system command

[Description]

 System(command): Executes a command by using system(). If the comma

nd

fails, the console should report a fallthrough.

Result of execution is returned in the SYSTEMSTATUS channel variable:

 FAILURE Could not execute the specified command

 SUCCESS Specified command successfully executed

Old behaviour:

If the command itself executes but is in error, and if there exists

a priority n + 101, where 'n' is the priority of the current instance,

then the channel will be setup to continue at that priority level.

Note that this jump functionality has been deprecated and will only occu

r

if the global priority jumping option is enabled in extensions.conf.

diff output to internal help in Asterisk 1.2:

- none -

[63] from http://www.pbxfreeware.org/archives/2005/06/index.html or http://www.pbxfreeware.org/
Transfer()

Transfers the call to another extension.

 Transfer([technology/]destination[,options])
Requests transfer of the caller to the specified extension or device. If the technology is specified (e.g. SIP, IAX2 etc.), only calls using the same technology will be transferred. In the case of SIP channels that have not yet been answered, this happens via a 302-REDIRECT message to the caller; if the call has already been answered, through a REFER message. The destination may also be a specific address, such as 8885551212@sip.provider.tld.

If option j is set, jumps to priority n+101 if the transfer fails.

Sets the channel variable TRANSFERSTATUS to SUCCESS, FAILURE or UNSUPPORTED (meaning the channel driver does not support transfers).

; Transfer calls intended for Extension 123 to Extension 130:

exten => 123,1,Transfer(130)

	[image: image186.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Transfer' =-

[Synopsis]

Transfer caller to remote extension

[Description]

 Transfer([Tech/]dest[|options]): Requests the remote caller be transf

erred

to a given destination. If TECH (SIP, IAX2, LOCAL etc) is used, only

an incoming call with the same channel technology will be transfered.

Note that for SIP, if you transfer before call is setup, a 302 redirect

SIP message will be returned to the caller.

The result of the application will be reported in the TRANSFERSTATUS

channel variable:

 SUCCESS Transfer succeeded

 FAILURE Transfer failed

 UNSUPPORTED Transfer unsupported by channel driver

The option string many contain the following character:

'j' -- jump to n+101 priority if the channel transfer attempt

 fails

diff output to internal help in Asterisk 1.2:

- none -

TryExec()

Tries to execute a dialplan application.

 TryExec(application(arguments))
Tries, like Exec(), to execute a dialplan application, but does not terminate the call if the attempt fails (either because the application does not exist or because it returned an error code). Instead, the channel variable TRYSTATUS is set to one of the following values:

SUCCESS
The application returned 0.

FAILED
The application returned a value other than 0.

NOAPP
The application could not be found.

For more information, see the section called “Exec()”.

See also. the section called “Exec()”, the section called “ExecIf()”, the section called “TrySystem()”
TrySystem()

Tries to execute a shell command.

 TrySystem(command)
Like System(), it executes a command on the shell (sh or its equivalents), but always returns 0. In contrast, System() returns -1 on error.

Sets the channel variable SYSTEMSTATUS to SUCCESS, FAILURE or APPERROR (command was run but returned an exit code other than 0).

exten => 123,1,TrySystem(echo 'Hey World' > /tmp/hey.txt)

	[image: image187.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'TrySystem' =-

[Synopsis]

Try executing a system command

[Description]

 TrySystem(command): Executes a command by using system().

on any situation.

Result of execution is returned in the SYSTEMSTATUS channel variable:

 FAILURE Could not execute the specified command

 SUCCESS Specified command successfully executed

 APPERROR Specified command successfully executed, but returned error

code

Old behaviour:

If the command itself executes but is in error, and if

there exists a priority n + 101, where 'n' is the priority of the curren

t

instance, then the channel will be setup to continue at that

priority level. Otherwise, System will terminate.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “System()”

UnpauseMonitor()

Resumes recording of a channel.

 UnpauseMonitor()
Resumes recording of a channel after it has been paused with PauseMonitor().

	[image: image188.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'UnpauseMonitor' =-

[Synopsis]

Unpause monitoring of a channel

[Description]

UnpauseMonitor

Unpauses monitoring of a channel on which monitoring had

previously been paused with PauseMonitor.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “Monitor()”, the section called “PauseMonitor()”
UnpauseQueueMember()

Resumes calls to a paused member of a queue.

 UnpauseQueueMember([queue,]interface[,options])
"Unpauses" a queue member previously "paused" with PauseQueueMember() (see an example there) so that the member can receive calls again.

Sets the channel variable UPQMSTATUS to UNPAUSED or NOTFOUND.

	[image: image189.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'UnpauseQueueMember' =-

[Synopsis]

Unpauses a queue member

[Description]

 UnpauseQueueMember([queuename]|interface[|options]):

Unpauses (resumes calls to) a queue member.

This is the counterpart to PauseQueueMember and operates exactly the

same way, except it unpauses instead of pausing the given interface.

The option string may contain zero or more of the following characters:

 'j' -- jump to +101 priority when appropriate.

 This application sets the following channel variable upon completion:

 UPQMSTATUS The status of the attempt to unpause a queue

 member as a text string, one of

 UNPAUSED | NOTFOUND

Example: UnpauseQueueMember(|SIP/3000)

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “PauseQueueMember()”

UserEvent()

Sends an arbitrary event to the manager interface.

 UserEvent(eventname[,body])
Sends an event of your choosing to the manager interface. The resulting event packet has the following format:

Event: UserEvent eventname
Channel: channelname
Uniqueid: call-identifier
[body]

Additional lines in the form fieldname: value may be specified in the body. Multiple lines are separated with the "|" ('pipe') character (in older versions of Asterisk, with "," or "^") getrennt.

Returns 0.

exten => 123,1,UserEvent(Test,Note: I am calling ${XY} now.)

exten => 123,n,Dial(${XY})

	[image: image190.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'UserEvent' =-

[Synopsis]

Send an arbitrary event to the manager interface

[Description]

 UserEvent(eventname[|body]): Sends an arbitrary event to the manager

interface, with an optional body representing additional arguments. The

body may be specified as a | delimeted list of headers. Each additional

argument will be placed on a new line in the event. The format of the

event will be:

 Event: UserEvent

 UserEvent: <specified event name>

 [body]

If no body is specified, only Event and UserEvent headers will be presen

t.

diff output to internal help in Asterisk 1.2:

8,14c8,13

< UserEvent(eventname[|body]): Sends an arbitrary event to the manager

< interface, with an optional body representing additional arguments. T

he

< body may be specified as a | delimeted list of headers. Each additiona

l

< argument will be placed on a new line in the event. The format of the

< event will be:

< Event: UserEvent

< UserEvent: <specified event name>

> UserEvent(eventname[|body]): Sends an arbitrary event to the

> manager interface, with an optional body representing additional

> arguments. The format of the event will be:

> Event: UserEvent<specified event name>

> Channel: <channel name>

> Uniqueid: <call uniqueid>

16,17c15,16

< If no body is specified, only Event and UserEvent headers will be pres

ent.

<

> If the body is not specified, only Event, Channel, and Uniqueid fields

> will be present. Returns 0.

See also. manager.conf, Asterisk Manager interface

Verbose()

Sends arbitrary text to the CLI at the verbose level specified.

 Verbose([level,]message)
Sends the specified message to the CLI. The level is an integer; the message will only appear at verbose levels equal to or greater than this number.[64]If level is not specified, 0 is assumed.

Returns 0.

exten => 123,1,Verbose(1,Someone is calling extension 123.)

exten => 123,n,Playback(extension)

exten => 123,n,SayDigits(${EXTEN})

	[image: image191.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Verbose' =-

[Synopsis]

Send arbitrary text to verbose output

[Description]

Verbose([<level>|]<message>)

 level must be an integer value. If not specified, defaults to 0.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “NoOp()”, the section called “Log()”, the section called “DumpChan()”

 HYPERLINK "http://www.the-asterisk-book.com/unstable/applikationen-dumpchan.html" \o "DumpChan()"

[64] e.g. asterisk -vvvr for verbose level 3 - or enter set verbose 3 in the CLI

VMAuthenticate()

Authenticates the caller using the voicemail password of the specified mailbox.

 VMAuthenticate([mailbox][@context][,options])
Behaves just like Authenticate() except that the passwords are taken from the configuration (and optional context) in voicemail.conf.

If a mailbox is specified, only the password for that mailbox will be accepted. If it is not provided, any voicemail password will be accepted! The channel variable ${AUTH_MAILBOX} is then populated with the name of the authenticated mailbox.

Option s suppresses the prompt.

; use the dialed extension as the reference mailbox and authenticate:

exten => 123,1,VMAuthenticate(${EXTEN}@sales)

exten => 123,n,SayDigits(${AUTH_MAILBOX})

	[image: image192.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'VMAuthenticate' =-

[Synopsis]

Authenticate with Voicemail passwords

[Description]

 VMAuthenticate([mailbox][@context][|options]): This application behave

s the

same way as the Authenticate application, but the passwords are taken fr

om

voicemail.conf.

 If the mailbox is specified, only that mailbox's password will be cons

idered

valid. If the mailbox is not specified, the channel variable AUTH_MAILBO

X will

be set with the authenticated mailbox.

 Options:

 s - Skip playing the initial prompts.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Authenticate()”, voicemail.conf
VoiceMail()

Allows the caller to leave a voice mail message in the specified mailbox.

 VoiceMail(mailbox[@context][&mailbox[@context][&...]],options)
old syntax:

 VoiceMail([s|u|b]mailbox[@context][&mailbox[@context][&...]])
Allows the caller to leave a voice mail message in the specified mailbox. The mailbox must already be configured in voicemail.conf. If more than mailbox is listed, the greeting from the first mailbox is the one that is played. If the mailbox does not exist, dialplan execution ends.

The option s (silent) suppresses the prompt. The option u plays the "unavailable" message, if it exists. The option b plays (busy) message, if it exists (file busy instead of unavail).

	[image: image193.png]

	

	
	You cannot mix syntax types. If you do, the application will fail as though the mailbox does not exist. We recommend always using the new syntax.

If option j is set, jumps to extension n+101, if it exists, on failure.

If the caller presses 0 during the prompt, the call goes to extension o (small letter "o", for operator) in the current context.

If the caller presses * during the prompt, the call goes to extension a (small letter "a", for assistant) in the current context.

Returns -1 in case of error (the mailbox could not be found or the caller hung up) otherwise returns 0. Sets the channel variable VMSTATUS to SUCCESS, USEREXIT (the caller cancelled the message) or FAILED.

; send the caller to mailbox 123, play the unavailable message:

exten => 123,1,VoiceMail(123,u)

	[image: image194.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'VoiceMail' =-

[Synopsis]

Leave a Voicemail message

[Description]

 VoiceMail(mailbox[@context][&mailbox[@context]][...][|options]): This

application allows the calling party to leave a message for the specifie

d

list of mailboxes. When multiple mailboxes are specified, the greeting w

ill

be taken from the first mailbox specified. Dialplan execution will stop

if the

specified mailbox does not exist.

 The Voicemail application will exit if any of the following DTMF digit

s are

received:

 0 - Jump to the 'o' extension in the current dialplan context.

 * - Jump to the 'a' extension in the current dialplan context.

 This application will set the following channel variable upon completi

on:

 VMSTATUS - This indicates the status of the execution of the VoiceMa

il

 application. The possible values are:

 SUCCESS | USEREXIT | FAILED

 Options:

 b - Play the 'busy' greeting to the calling party.

 g(#) - Use the specified amount of gain when recording the voicemail

 message. The units are whole-number decibels (dB).

 s - Skip the playback of instructions for leaving a message to th

e

 calling party.

 u - Play the 'unavailble greeting.

 j - Jump to priority n+101 if the mailbox is not found or some ot

her

 error occurs.

diff output to internal help in Asterisk 1.2:

28c28

< u - Play the 'unavailble greeting.

> u - Play the 'unavailable greeting.

See also. the section called “VoiceMailMain()”, voicemail.conf
VoiceMailMain()

Allows the caller to check voice mail messages.

 VoiceMailMain([mailbox][@context][,options])
old syntax:

 VoiceMailMain([[s|p]mailbox][@context])
Allows access to the mailbox for listening to messages. If the mailbox number is not specified, the system prompts the caller for the mailbox number.

Option s skips the password prompt. Option p (prefix) prompts the caller to enter a mailbox number; the number specified in the command is then used as a prefix to the number provided by the caller and the resulting string is used as the mailbox number. This can be useful with virtual mailbox hosting. Option a(folder) sends the caller directly to the specified folder (default: INBOX).

If a context is specified, only mailboxes in the specified context are accessible.

Returns -1 if the caller hangs up, otherwise 0.

; go to the voicemail menu for mailbox 123 in the default context:

exten => 123,1,VoiceMailMain(123@default)

	[image: image195.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'VoiceMailMain' =-

[Synopsis]

Check Voicemail messages

[Description]

 VoiceMailMain([mailbox][@context][|options]): This application allows

the

calling party to check voicemail messages. A specific mailbox, and optio

nal

corresponding context, may be specified. If a mailbox is not provided, t

he

calling party will be prompted to enter one. If a context is not specifi

ed,

the 'default' context will be used.

 Options:

 p - Consider the mailbox parameter as a prefix to the mailbox tha

t

 is entered by the caller.

 g(#) - Use the specified amount of gain when recording a voicemail

 message. The units are whole-number decibels (dB).

 s - Skip checking the passcode for the mailbox.

 a(#) - Skip folder prompt and go directly to folder specified.

 Defaults to INBOX

diff output to internal help in Asterisk 1.2:

20,21d19

< a(#) - Skip folder prompt and go directly to folder specified.

< Defaults to INBOX

See also. the section called “VoiceMail()”, voicemail.conf
Wait()

Waits for the specified number of seconds.

 Wait(seconds)
Waits the specified number of seconds, then returns 0. Fractions are allowed (for example, 1.5).

exten => s,1,Answer()

exten => s,n,Wait(1.5)

exten => s,n,Background(enter-ext-of-person)

	[image: image196.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Wait' =-

[Synopsis]

Waits for some time

[Description]

 Wait(seconds): This application waits for a specified number of second

s.

Then, dialplan execution will continue at the next priority.

 Note that the seconds can be passed with fractions of a second. For ex

ample,

'1.5' will ask the application to wait for 1.5 seconds.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “WaitExten()”

WaitExten()

Waits for an extension to be dialed.

 WaitExten([seconds][,options])
Waits the specified number of seconds for the caller to dial a new extension, then returns 0. Fractions are allowed (for example, 1.5). If no time is specified, the default extension timeout is used.

Option m plays music-on-hold to the caller while waiting for input. The music-on-hold class may be specified in parentheses (e.g. m(rock).

; Wait 10 seconds for an extension:

exten => s,1,Answer()

exten => s,n,Playback(enter-ext-of-person)

exten => s,n,WaitExten(10)

	[image: image197.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'WaitExten' =-

[Synopsis]

Waits for an extension to be entered

[Description]

 WaitExten([seconds][|options]): This application waits for the user to

 enter

a new extension for a specified number of seconds.

 Note that the seconds can be passed with fractions of a second. For ex

ample,

'1.5' will ask the application to wait for 1.5 seconds.

 Options:

 m[(x)] - Provide music on hold to the caller while waiting for an ex

tension.

 Optionally, specify the class for music on hold within pa

renthesis.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Wait()”

WaitForRing()

Waits the specified number of seconds for a ring signal.

 WaitForRing(timeout)
Waits a maximum of timeout seconds for a ring signal, which is only treated as valid until the second ring has completed.

Returns 0 on success, or -1 if the channel is hung up.

; Wait 5 seconds for ring, then send DTMF:

exten => 123,1,Answer()

exten => 123,n,WaitForRing(5)

exten => 123,n,SendDTMF(1234)

	[image: image198.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'WaitForRing' =-

[Synopsis]

Wait for Ring Application

[Description]

 WaitForRing(timeout)

Returns 0 after waiting at least timeout seconds. and

only after the next ring has completed. Returns 0 on

success or -1 on hangup

diff output to internal help in Asterisk 1.2:

- none -

WaitForSilence()

Waits for silence of a specified duration.

 WaitForSilence(duration[,repeats])
Waits for duration milliseconds of silence. If repeats are specified, the application waits until it hears at least that many instances of silence of the specified duration.

; Wait for 2 silences of at least 500 ms:

exten => 123,1,WaitForSilence(500,2)

exten => 123,n,Playback(tt-weasels)

	[image: image199.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'WaitForSilence' =-

[Synopsis]

Waits for a specified amount of silence

[Description]

 WaitForSilence(silencerequired[|iterations][|timeout])

Wait for Silence: Waits for up to 'silencerequired'

milliseconds of silence, 'iterations' times or once if omitted.

An optional timeout specified the number of seconds to return

after, even if we do not receive the specified amount of silence.

Use 'timeout' with caution, as it may defeat the purpose of this

application, which is to wait indefinitely until silence is detected

on the line. This is particularly useful for reverse-911-type

call broadcast applications where you need to wait for an answering

machine to complete its spiel before playing a message.

The timeout parameter is specified only to avoid an infinite loop in

cases where silence is never achieved. Typically you will want to

include two or more calls to WaitForSilence when dealing with an answeri

ng

machine; first waiting for the spiel to finish, then waiting for the bee

p, etc.

Examples:

 - WaitForSilence(500|2) will wait for 1/2 second of silence, twice

 - WaitForSilence(1000) will wait for 1 second of silence, once

 - WaitForSilence(300|3|10) will wait for 300ms silence, 3 times,

 and returns after 10 sec, even if silence is not detected

Sets the channel variable WAITSTATUS with to one of these values:

SILENCE - if exited with silence detected

TIMEOUT - if exited without silence detected after timeout

diff output to internal help in Asterisk 1.2:

8,23c8,10

< WaitForSilence(silencerequired[|iterations][|timeout])

< Wait for Silence: Waits for up to 'silencerequired'

< milliseconds of silence, 'iterations' times or once if omitted.

< An optional timeout specified the number of seconds to return

< after, even if we do not receive the specified amount of silence.

< Use 'timeout' with caution, as it may defeat the purpose of this

< application, which is to wait indefinitely until silence is detected

< on the line. This is particularly useful for reverse-911-type

< call broadcast applications where you need to wait for an answering

< machine to complete its spiel before playing a message.

< The timeout parameter is specified only to avoid an infinite loop in

< cases where silence is never achieved. Typically you will want to

< include two or more calls to WaitForSilence when dealing with an answe

ring

< machine; first waiting for the spiel to finish, then waiting for the b

eep, etc.

<

< Examples:

> WaitForSilence(x[|y]) Wait for Silence: Waits for up to 'x'

> milliseconds of silence, 'y' times or 1 if omitted

> Set the channel variable WAITSTATUS with to one of these values:SILENC

E - if silence of x ms was detectedTIMEOUT - if silence of x ms was not

detected.Examples:

26,31d12

< - WaitForSilence(300|3|10) will wait for 300ms silence, 3 times,

< and returns after 10 sec, even if silence is not detected

<

< Sets the channel variable WAITSTATUS with to one of these values:

< SILENCE - if exited with silence detected

< TIMEOUT - if exited without silence detected after timeout

WaitMusicOnHold()

Play music-on-hold while waiting for the specified number of seconds.

 WaitMusicOnHold(duration)
Plays music-on-hold while waiting for the specified number of seconds. If no hold music is available, it waits anyway, but without playing music.

Returns 0 on completion, or -1 if the channel is hung up.

; 5 Minuten Wartemusik:

exten => 123,1,Answer()

exten => 123,n,WaitMusicOnHold(300)

exten => 123,n,Hangup()

	[image: image200.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'WaitMusicOnHold' =-

[Synopsis]

Wait, playing Music On Hold

[Description]

WaitMusicOnHold(delay): Plays hold music specified number of seconds. R

eturns 0 when

done, or -1 on hangup. If no hold music is available, the delay will

still occur with no sound.

diff output to internal help in Asterisk 1.2:

- none -

See also. musiconhold.conf

While()

Starts a while loop.

 While(expression)
Starts a while loop. The application returns to this point if EndWhile() is encountered as long as expression is true; if it is false, execution continues after EndWhile().

exten => 123,1,Answer()

exten => 123,n,Set(i=1)

exten => 123,n,While($[${i} < 5])

exten => 123,n,SayNumber(${i})

exten => 123,n,Set(i=$[${i} + 1])

exten => 123,n,EndWhile()

exten => 123,n,Hangup()

	[image: image201.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'While' =-

[Synopsis]

Start a while loop

[Description]

Usage: While(<expr>)

Start a While Loop. Execution will return to this point when

EndWhile is called until expr is no longer true.

diff output to internal help in Asterisk 1.2:

5c5

< Start a while loop

> Start A While Loop

See also. the section called “EndWhile()”, the section called “ExitWhile()”, the section called “ContinueWhile()”, the section called “GotoIf()”
Zapateller()

Generates the "Special Information Tone" to block advance dialing telemarketing systems.

 Zapateller(options)
Generates the "Special Information Tone" to indicate the number is not valid or reachable. Some predictive dialing systems will automatically delete a number from the calling list if they receive this tone.

The following "|"-delimited options are accepted:

answer
Answers the line before playing the tone sequence.

nocallerid
Plays the tone only if no caller ID information is received.

[incoming]

; Play the SIT sequence if no caller ID is present:

exten => s,1,Zapateller(nocallerid)

exten => s,n,Wait(3)

exten => s,n,Answer()

	[image: image202.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'Zapateller' =-

[Synopsis]

Block telemarketers with SIT

[Description]

 Zapateller(options): Generates special information tone to block

telemarketers from calling you. Options is a pipe-delimited list of

options. The following options are available:

'answer' causes the line to be answered before playing the tone,

'nocallerid' causes Zapateller to only play the tone if there

is no callerid information available. Options should be separated by |

characters

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “PrivacyManager()”

ZapBarge()

Allows eavesdropping on a Zap channel.

 ZapBarge([channel])
Allows eavesdropping on a Zap channel. Other participants in the call do not hear the eavesdropper and do not receive any indication that the channel is being monitored.

If the channel is not provided, the user is prompted to enter it, following by the "#" key. In this case, to barge on Zap/4, press "4" and "#".

Returns -1, if the caller hangs up, whether or not a channel is being monitored.

exten => 123,1,ZapBarge(Zap/2)

exten => 123,n,Hangup()

See also. the section called “ZapScan()”, the section called “ChanSpy()”
	[image: image203.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ZapBarge' =-

[Synopsis]

Barge in (monitor) Zap channel

[Description]

 ZapBarge([channel]): Barges in on a specified zap

channel or prompts if one is not specified. Returns

-1 when caller user hangs up and is independent of the

state of the channel being monitored.

diff output to internal help in Asterisk 1.2:

- none -

ZapRAS()

Starts the Zaptel ISDN Remote Access Server.

 ZapRAS(args)
Starts an ISDN RAS Server using pppd on the current channel. The channel must be available (i.e. PRI Source) and a Zap channel. There is no modem emulation.

The point-to-point daemon pppd must be configured to recognize a Zap interface. The args are a "|" delimited list of parameters.[65]Returns -1.

This application is only intended for use with ISDN lines, and your kernel must be patched and configured to support ZapRAS(), as well as be configured to support PPP.

exten => 123,1,Answer()

exten => 123,n,ZapRAS(debug|64000|noauth|netmask|255.255.255.0|10.0.0.1:

10.0.0.2)

	[image: image204.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ZapRAS' =-

[Synopsis]

Executes Zaptel ISDN RAS application

[Description]

 ZapRAS(args): Executes a RAS server using pppd on the given channel.

The channel must be a clear channel (i.e. PRI source) and a Zaptel

channel to be able to use this function (No modem emulation is included)

.

Your pppd must be patched to be zaptel aware. Arguments should be

separated by | characters.

diff output to internal help in Asterisk 1.2:

- none -

[65] The list is long and complex and would not be appropriate in this summary. For more details, see http://www.voip-info.org/wiki/view/Asterisk+cmd+ZapRAS
ZapScan()

Scans through Zap channels for eavesdropping.

 ZapScan([group])
Enables a call center manager to monitor Zap channels quickly and conveniently. Press "#" to switch to the next channel or "*" to exit. You may limit the available channels by specifying group.

exten => 123,1,ZapScan()

See also. the section called “ZapBarge()”, the section called “ChanSpy()”
	[image: image205.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about application 'ZapScan' =-

[Synopsis]

Scan Zap channels to monitor calls

[Description]

 ZapScan([group]) allows a call center manager to monitor Zap channels

in

a convenient way. Use '#' to select the next channel and use '*' to exi

t

Limit scanning to a channel GROUP by setting the option group argument.

diff output to internal help in Asterisk 1.2:

- none -

Appendix C. Functions in the dialplan

In addition to dialplan applications, which have been part of Asterisk almost from the very beginning, Asterisk also supports functions as of Asterisk 1.2. This is part of a long-standing effort to make Asterisk behave more like a programming environment. In contrast to applications, functions may not be called directly. Instead, they are called inside applications and return a value, or -- in a departure from the classical definition of a function -- they may even be written to using the application Set() (see the section called “Set()”). Function names are always written in uppercase letters. Surprisingly, functions are written in the same way as variables, inside curly braces and preceded by a $ character (${}). This is necessary because strings are not always bounded by quotation marks.

We could be forgiven for criticizing the less-than-intuitive distinction between Asterisk applications, functions and even variables. Nor is there a consistently applied naming convention: for example, SIP_HEADER() is broken by an underscore ("_") but SIPCHANINFO() is not. This is a problem with many programming languages and environments; these differences in convention add no useful information but make learning more difficult. In addition to this, the use of the delimiters , ("comma"), & ("ampersand") and | ("pipe") appears arbitrary. The concept of writing to a function in the same way one might write to a variable goes counter to the basic definition of a function in nearly every other programming language and continues to cause confusion, particularly among new Asterisk users with programming backgrounds.

Despite considerable improvements in Version 1.4, the dialplan programming remains rather inflexible when compared with "real" programming languages. If this proves bothersome, you might consider exploring Asterisk Extension Language (AEL) in more depth (see ???) as it uses the same functions and applications but has a more robust structure and is often easier to interpret.

In any case, it is sensible to start getting comfortable with AEL, as the Asterisk development roadmap shows that it will eventually replace the current dialplan language entirely.

To find out which functions are currently available in your installation, enter show functions and show function FUNCTIONNAME or core show functions and core show function FUNCTIONNAME (depending on your Asterisk version) in the CLI.[66]Note that these commands are case-sensitive. Function names must be written entirely in uppercase.

[66] Command Line Interface. This may be invoked with asterisk -r.

AGENT()

AGENT(agentNumber[:field])

Returns information about an agent identified by agentNumber. The following fields may be queried:

status
(default) The status of the agent, either LOGGEDIN or LOGGEDOUT
password
The agent's password

name
The agent's name

mohclass
The music-on-hold class

exten
The callback extension for the agent. This is used by AgentCallbackLogin().

channel
The name of the agent's active channel (used bt AgentLogin())

; set the variable foo to the name of Agent 42:

exten => 123,1,Set(foo=${AGENT(42:name)})

	[image: image206.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'AGENT' =-

[Syntax]

AGENT(<agentid>[:item])

[Synopsis]

Gets information about an Agent

[Description]

The valid items to retrieve are:

- status (default) The status of the agent

 LOGGEDIN | LOGGEDOUT

- password The password of the agent

- name The name of the agent

- mohclass MusicOnHold class

- exten The callback extension for the Agent (AgentCallb

ackLogin)

- channel The name of the active channel for the Agent (Ag

entLogin)

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

BASE64_DECODE()

BASE64_DECODE(Base64_String)

(beginning Asterisk 1.4)
Decodes a base64-encoded string.

exten => 123,1,Set(foo=${BASE64_DECODE("SGFsbG8gV2VsdA==")})

	[image: image207.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'BASE64_DECODE' =-

[Syntax]

BASE64_DECODE(<base64_string>)

[Synopsis]

Decode a base64 string

[Description]

Returns the plain text string

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

BASE64_ENCODE()

BASE64_ENCODE(String)

(beginning Asterisk 1.4)
Encodes a string in base64.

exten => 123,1,Set(foo=${BASE64_ENCODE("Hey World")})

	[image: image208.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'BASE64_ENCODE' =-

[Syntax]

BASE64_ENCODE(<string>)

[Synopsis]

Encode a string in base64

[Description]

Returns the base64 string

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

CALLERID()

CALLERID(field)

Returns or sets information about the caller. The field is one of the following:

name
Name of the caller, as an alphanumeric string. Keeping this string short is recommended (e.g. 15 characters).

num
Number of the caller, digits only. (Sometimes also found in field number, perhaps depending on the Asterisk version)

all
Name and number with the number in angle brackets, e.g.: "Robert Cossack <2125558721>"

ani
ANI[67], for outgoing calls

dnid
DNID[68] number. Corresponds to the dialed number (Sometimes also found in field dnis, perhaps depending on the Asterisk version)

rdnis
RDNIS[69] number. The number which was forwarded to the current extension. (This is useful, for example, if the number of the active mailbox does not correspond to that of the dialed extension.)

The old channel variable ${CALLERIDNUM} is replaced by the function ${CALLERID(num)} as of Asterisk 1.4 (Similarly, ${RDNIS} is replaced by $(CALLERID(rdnis)) etc.). The application SetCIDName() is replaced by Set(CALLERID(name)=Name) (Similarly, SetCallerID() is replaced by Set(CALLERID(all)=Name <Number>) etc.).

; Set the variable foo to the complete caller ID:

exten => 123,1,Set(foo=${CALLERID(all)})

; Set the caller namer to "Robert Cossack":

exten => 123,1,Set(CALLERID(name)="Robert Cossack")

	[image: image209.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'CALLERID' =-

[Syntax]

CALLERID(datatype[,<optional-CID>])

[Synopsis]

Gets or sets Caller*ID data on the channel.

[Description]

Gets or sets Caller*ID data on the channel. The allowable datatypes

are "all", "name", "num", "ANI", "DNID", "RDNIS".

Uses channel callerid by default or optional callerid, if specified.

diff output to internal help in Asterisk 1.2:

5c5

< CALLERID(datatype[,<optional-CID>])

> CALLERID(datatype)

13d12

< Uses channel callerid by default or optional callerid, if specified.

[67] Automatic Number Identification

[68] Dialed/Destination Number Identification Service

[69] Redirected Dialed Number Identification Service

CDR()

CDR(field)

Reads or sets CDR[70] fields. The field is one of the following (only reading is possible unless otherwise noted):

clid
Caller ID

src
The source number (caller ID number)

dst
The call destination

dcontext
Destination context

channel
Channel name

dstchannel
Destination channel, if applicable

lastapp
The last executed application

lastdata
The arguments to the last executed application

start
Time the call started

answer
Time the call was answered

end
Time the call ended

duration
Duration of the call in seconds

billsec
Duration of the call since the call was answered (in other words, the billable duration) in seconds

disposition
Status of the call: ANSWERED, NO ANSWER, BUSY or FAILED
amaflags
The AMA[71] flags. Possible flags are DEFAULT, BILLING, DOCUMENTATION and OMIT. (Sometimes BILLING and OMIT are replaced by BILL and IGNORE, perhaps depending on the Asterisk version.)

accountcode
The alphanumeric ID of the billing account, maximum 20 characters. May be set as well as read

uniqueid
The unique ID of the channel (maximum 32 characters)

userfield
A user field for storing arbitrary information (maximum 255 characters). May be set as well as read

; Set foo to the duration of the call:

exten => 123,1,Set(foo=${CDR(duration)})

; Set the user field to "my information":

exten => 123,1,Set(CDR(userfield)=my information)

	[image: image210.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'CDR' =-

[Syntax]

 Here is a list of all the available cdr field names:

 clid lastdata disposition

 src start amaflags

 dst answer accountcode

 dcontext end uniqueid

 dstchannel duration userfield

 lastapp billsec channel

 All of the above variables are read-only, except for accountcode,

 userfield, and amaflags. You may, however, supply

 a name not on the above list, and create your own

 variable, whose value can be changed with this function,

 and this variable will be stored on the cdr.

 raw values for disposition:

 1 = NO ANSWER

 2 = BUSY

 3 = FAILED

 4 = ANSWERED

 raw values for amaflags:

 1 = OMIT

 2 = BILLING

 3 = DOCUMENTATION

[Synopsis]

Gets or sets a CDR variable

[Description]

Options:

 'r' searches the entire stack of CDRs on the channel

 'u' retrieves the raw, unprocessed value

 For example, 'start', 'answer', and 'end' will be retrieved as epoch

 values, when the 'u' option is passed, but formatted as YYYY-MM-DD HH:

MM:SS

 otherwise. Similarly, disposition and amaflags will return their raw

 integral values.

diff output to internal help in Asterisk 1.2:

5,26c5

< Here is a list of all the available cdr field names:

< clid lastdata disposition

< src start amaflags

< dst answer accountcode

< dcontext end uniqueid

< dstchannel duration userfield

< lastapp billsec channel

< All of the above variables are read-only, except for accountcode,

< userfield, and amaflags. You may, however, supply

< a name not on the above list, and create your own

< variable, whose value can be changed with this function,

< and this variable will be stored on the cdr.

< raw values for disposition:

< 1 = NO ANSWER

< 2 = BUSY

< 3 = FAILED

< 4 = ANSWERED

< raw values for amaflags:

< 1 = OMIT

< 2 = BILLING

< 3 = DOCUMENTATION

<

> CDR(<name>[|options])

32,38c11

< Options:

< 'r' searches the entire stack of CDRs on the channel

< 'u' retrieves the raw, unprocessed value

< For example, 'start', 'answer', and 'end' will be retrieved as epoch

< values, when the 'u' option is passed, but formatted as YYYY-MM-DD H

H:MM:SS

< otherwise. Similarly, disposition and amaflags will return their ra

w

< integral values.

> Option 'r' searches the entire stack of CDRs on the channel

[70] Call Data Record, siehe ???
[71] Automated Message Accounting, see ???
CHANNEL()

CHANNEL(field)

(beginning Asterisk 1.4)
Reads/sets specific channel parameters. The field is one of the following (only reading is possible unless otherwise noted):

audioreadformat
The format for incoming audio on the channel

audionativeformat
The native audio format of the channel

audiowriteformat
The format for outgoing audio on the channel

callgroup
Extensions in Asterisk can be sorted into call groups numbered from 0 - 63, e.g. as a client number.[72]
channeltype
The channel driver, or "technology" of the current channel, e.g.: IAX or SIP

language
The language for voice prompts. May be set as well as read

musicclass
The music-on-hold class, as defined in musiconhold.conf. May be set as well as read

state
State of the channel (Down, Rsrvd, OffHook, Dialing, Ring, Ringing, Up, Busy, Dialing Offhook, Pre-ring, Unknown)

tonezone
The "tone zone" defines the standard tone indications (dialing, ringing, busy, etc.) for specific regions and countries. This is set in the configuration file for the channel driver (e.g. zaptel.conf) with the parameters loadzone and defaultzone. Possible values are (as defined in indications.conf): at, au, be, br, ch, cl, cn, cz, de, dk, ee, es, fi, fr, gr, hu, it, lt, mx, ml, no, nz, pl, pt, ru, se, sg, uk, us, us-old, tw, ve, za.

videonativeformat
The native video format of the channel

In addition to the field described above, specific channel drivers can make others available. To learn more about these, look in the documentation for the specific channel driver. Fields which are unavailable on the current channel will return an empty string.

; Query the channel type:

exten => 123,1,Set(foo=${CHANNEL(channeltype)})

; Change language to English:

exten => 123,1,Set(CHANNEL(language)=en)

	[image: image211.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'CHANNEL' =-

[Syntax]

CHANNEL(item)

[Synopsis]

Gets/sets various pieces of information about the channel.

[Description]

Gets/set various pieces of information about the channel.

Standard items (provided by all channel technologies) are:

R/O audioreadformat format currently being read

R/O audionativeformat format used natively for audio

R/O audiowriteformat format currently being written

R/W callgroup call groups for call pickup

R/O channeltype technology used for channel

R/W language language for sounds played

R/W musicclass class (from musiconhold.conf) for hold music

R/W rxgain set rxgain level on channel drivers that suppor

t it

R/O state state for channel

R/W tonezone zone for indications played

R/W txgain set txgain level on channel drivers that suppor

t it

R/O videonativeformat format used natively for video

Additional items may be available from the channel driver providing

the channel; see its documentation for details.

Any item requested that is not available on the current channel will

return an empty string.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

[72] This limit of 64 call groups appears to be completely arbitrary and may not be sufficient for all users.

CHECKSIPDOMAIN()

CHECKSIPDOMAIN(domain)

Checks to see if the specified SIP domain name (may also be an IP address) is local (see sip.conf). Returns the domain name, IP address or empty string.

exten => 123,1,Set(foo=${CHECKSIPDOMAIN(123.45.67.89)})

	[image: image212.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'CHECKSIPDOMAIN' =-

[Syntax]

CHECKSIPDOMAIN(<domain|IP>)

[Synopsis]

Checks if domain is a local domain

[Description]

This function checks if the domain in the argument is configured

as a local SIP domain that this Asterisk server is configured to handle.

Returns the domain name if it is locally handled, otherwise an empty str

ing.

Check the domain= configuration in sip.conf

diff output to internal help in Asterisk 1.2:

- none -

CURL()

CURL(URL[|POST-data])

Loads a web page from the specified URL using GET. If POST-data are provided, these are sent with POST. Returns the page as a string.

; Retrieve http://example.com/page.php?id=1&action=view :

exten => 123,1,Set(foo=${CURL(http://example.com/page.php?id=1&action=vi

ew)})

CUT()

CUT(variablename,delimiter,field)

(As of Asterisk 1.2.8, use a pipe ("|") character instead of commas as a parameter delimiter.)

Processes a string in a variable according to a specified delimiter (default: -) and returns the requested fields. The field may also be a range of fields (e.g. 2-4) or multiple fields and ranges, separated with "&", e.g. 2-4&6; ranges such as 3- (everything from field 3 on) or -3 (everything up to field 3) is possible.

If a comma is used as a delimiter, it must first be escaped with a backslash, e.g. CUT(var,\,,2).

exten => 123,1,Set(var=1-2-3-4-5) ; var is "1-2-3-4-5"

exten => 123,n,Set(var=${CUT(var,,1-3&5)}) ; var is "1-2-3-5"

	[image: image213.png]

	

	
	The parameter variablename must be the name of a variable, and not a string. If foo is the variable name and bar the contents, the following example would be incorrect: CUT(${bar},,3)

See also. the section called “FIELDQTY()”

	[image: image214.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'CUT' =-

[Syntax]

CUT(<varname>,<char-delim>,<range-spec>)

[Synopsis]

Slices and dices strings, based upon a named delimiter.

[Description]

 varname - variable you want cut

 char-delim - defaults to '-'

 range-spec - number of the field you want (1-based offset)

 may also be specified as a range (with -)

 or group of ranges and fields (with &)

diff output to internal help in Asterisk 1.2:

- none -

DB()

DB(family/key)

Reads/sets a value in the Asterisk DB (AstDB). When reading, either a value is returned, or an empty string if the key does not exist. The output can be found in the variable DB_RESULT.

; Set open/source in the AstDB and then query it:

exten => 123,1,Set(DB(open/source)=${yes})

exten => 123,n,Set(var=${DB(open/source)})

exten => 123,n,GotoIf($[[${DB(open/source)} = 1]?opensource:closedsource

)

	[image: image215.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'DB' =-

[Syntax]

DB(<family>/<key>)

[Synopsis]

Read from or write to the Asterisk database

[Description]

This function will read from or write a value to the Asterisk database.

 On a

read, this function returns the corresponding value from the database, o

r blank

if it does not exist. Reading a database value will also set the variab

le

DB_RESULT. If you wish to find out if an entry exists, use the DB_EXIST

S

function.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “DB_EXISTS()”, the section called “DB_DELETE()”, the section called “DBdeltree()”
DB_DELETE()

DB_DELETE(family/key)

Deletes a value from the AstDB. Upon completion, the variable DB_RESULT is set to this value, if it exists.

; delete cidnums/4045559814:

exten => 123,1,Set(ignored=${DB_DELETE(cidnums/4045559814)})

	[image: image216.png]

	

	
	For versions prior to Asterisk 1.4, use the application DBdel().

	[image: image217.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'DB_DELETE' =-

[Syntax]

DB_DELETE(<family>/<key>)

[Synopsis]

Return a value from the database and delete it

[Description]

This function will retrieve a value from the Asterisk database

 and then remove that key from the database. DB_RESULT

will be set to the key's value if it exists.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “DB()”, the section called “DB_EXISTS()”, the section called “DBdel()”, the section called “DBdeltree()”
DB_EXISTS()

DB_EXISTS(family/key)

Tests to see if a key exists in the AstDB. Returns 1 or 0. Sets the variable DB_RESULT to the value of the key, if it exists.

; Query if cidnums/4045559814 exists:

exten => 123,1,Set(foo=${DB_EXISTS(cidnums/4045559814)})

This is one way to replace the application LookupBlacklist(). This code example causes Asterisk to jump to the context blacklisted, extension s, priority 1, if the CID can be found in the blacklist:

exten => 123,1,GotoIf(${DB_EXISTS(blacklist/${CALLERID(num)})}?blacklist

ed,s,1)

exten => 123,n,Dial(IAX2/user:password@example.com/500)

[blacklisted]

exten => s,1,NoOp(${CALLERID(num)} is in the blacklist)

exten => s,n,Hangup()

	[image: image218.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'DB_EXISTS' =-

[Syntax]

DB_EXISTS(<family>/<key>)

[Synopsis]

Check to see if a key exists in the Asterisk database

[Description]

This function will check to see if a key exists in the Asterisk

database. If it exists, the function will return "1". If not,

it will return "0". Checking for existence of a database key will

also set the variable DB_RESULT to the key's value if it exists.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “DB()”, the section called “DB_DELETE()”, the section called “DBdeltree()”
DUNDILOOKUP()

DUNDILOOKUP(number[|DUNDi-context[|options]])

Looks up a telephone number with DUNDi (???). If DUNDi-context is specified, e164 is assumed. The option b (bypass) will cause Asterisk to bypass the internal DUNDi cache. Returns the found entry in the form technology/resource, if it exists, otherwise returns an empty string.

; look up number 5145550123 in DUNDi:

exten => 123,1,Set(foo=${DUNDILOOKUP(5145550123)})

	[image: image219.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'DUNDILOOKUP' =-

[Syntax]

DUNDILOOKUP(number[|context[|options]])

[Synopsis]

Do a DUNDi lookup of a phone number.

[Description]

This will do a DUNDi lookup of the given phone number.

If no context is given, the default will be e164. The result of

this function will the Technology/Resource found in the DUNDi

lookup. If no results were found, the result will be blank.

If the 'b' option is specified, the internal DUNDi cache will

be bypassed.

diff output to internal help in Asterisk 1.2:

- none -

See also. dundi.conf

ENUMLOOKUP()

Asterisk 1.2:

ENUMLOOKUP(number[,service[,optionsANDentrynumber[,zone-suffix]]])

Asterisk 1.4:

ENUMLOOKUP(number[,service[,options,entrynumber[,Zonen-Suffix]]])

Looks up a number with ENUM (???). The service can be sip (default), iax2, h323, tel or ALL. The option c returns the number of entries. The entrynumber (default 1) selects the entry from the list of results. The zone-suffix (default: e164.arpa) is the ENUM zone. Comprehensive descriptions and examples may be found in doc/README.enum (1.2) / doc/enum.txt (1.4).

; in Asterisk 1.2:

exten => 123,1,Set(foo=${ENUMLOOKUP(+${CALLERID(num)},sip,1,freenum.org)

})

; in Asterisk 1.4:

exten => 123,1,Set(foo=${ENUMLOOKUP(+${CALLERID(num)},sip,,1,freenum.org

)})

	[image: image220.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'ENUMLOOKUP' =-

[Syntax]

ENUMLOOKUP(number[|Method-type[|options[|record#[|zone-suffix]]]])

[Synopsis]

ENUMLOOKUP allows for general or specific querying of NAPTR records or c

ounts of NAPTR types for ENUM or ENUM-like DNS pointers

[Description]

Option 'c' returns an integer count of the number of NAPTRs of a certain

 RR type.

Combination of 'c' and Method-type of 'ALL' will return a count of all N

APTRs for the record.

Defaults are: Method-type=sip, no options, record=1, zone-suffix=e164.ar

pa

For more information, see doc/enum.txt

diff output to internal help in Asterisk 1.2:

5c5

< ENUMLOOKUP(number[|Method-type[|options[|record#[|zone-suffix]]]])

> ENUMLOOKUP(number[,Method-type[,options|record#[,zone-suffix]]])

15c15

< For more information, see doc/enum.txt

> For more information, see README.enum

See also. enum.conf

ENV()

ENV(variablename)

Reads/sets an environment variable (a variable in the operating system environment - these can be viewed from the shell with echo $variablename). Environment variables are case-sensitive and are almost always written all uppercase.

; read HOME:

exten => 123,1,Set(foo=${ENV(HOME)})

; set HOME:

exten => 123,1,Set(ENV(HOME)=/myAst)

	[image: image221.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'ENV' =-

[Syntax]

ENV(<envname>)

[Synopsis]

Gets or sets the environment variable specified

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

EVAL()

EVAL(variable)

Evaluates a variable twice. An example is useful: If the variable ${VAR} contains a string "${VAR2}", that is what is returned when ${VAR} is called. If Eval() is used, the nested variable is also evaluated, and the contents of ${VAR2} are also returned.

; If VAR contains the string "${VAR2}" and VAR2 contains the string "Hel

lo World":

exten => 123,1,Set(foo=${EVAL(${VAR})})

; now foo is "Hello World"

	[image: image222.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'EVAL' =-

[Syntax]

EVAL(<variable>)

[Synopsis]

Evaluate stored variables.

[Description]

Using EVAL basically causes a string to be evaluated twice.

When a variable or expression is in the dialplan, it will be

evaluated at runtime. However, if the result of the evaluation

is in fact a variable or expression, using EVAL will have it

evaluated a second time. For example, if the variable ${MYVAR}

contains "${OTHERVAR}", then the result of putting ${EVAL(${MYVAR})}

in the dialplan will be the contents of the variable, OTHERVAR.

Normally, by just putting ${MYVAR} in the dialplan, you would be

left with "${OTHERVAR}".

diff output to internal help in Asterisk 1.2:

- none -

EXISTS()

EXISTS(variable)

Checks to see if a variable is defined. Returns 1 or 0.

exten => 123,1,Set(Var1=test)

exten => 123,n,Set(Var2=)

exten => 123,n,Set(foo=${EXISTS(${Var1})}) ; foo is 1

exten => 123,n,Set(foo=${EXISTS(${Var2})}) ; foo is 0

	[image: image223.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'EXISTS' =-

[Syntax]

EXISTS(<data>)

[Synopsis]

Existence Test: Returns 1 if exists, 0 otherwise

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

FIELDQTY()

FIELDQTY(variablename,delimiter)

Returns the number of fields which exist if variablename is partitioned using delimiter.

exten => 123,1,Set(Var=hello#you#there#on#the#telephone)

exten => 123,n,Set(Count=${FIELDQTY(Var,#)}) ; Count ist 6

	[image: image224.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'FIELDQTY' =-

[Syntax]

FIELDQTY(<varname>|<delim>)

[Synopsis]

Count the fields, with an arbitrary delimiter

[Description]

Not available

diff output to internal help in Asterisk 1.2:

5c5

< FIELDQTY(<varname>|<delim>)

> FIELDQTY(<varname>,<delim>)

See also. the section called “CUT()”

FILTER()

FILTER(allowedCharacters,string)

(beginning Asterisk 1.4)
Filters string so that only the allowed characters are returned.

; allow only 0123456789 from ${cdrnum}:

exten => 123,1,Set(foo=${FILTER(0123456789,${cdrnum})})

	[image: image225.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'FILTER' =-

[Syntax]

FILTER(<allowed-chars>|<string>)

[Synopsis]

Filter the string to include only the allowed characters

[Description]

Not available

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

GLOBAL()

GLOBAL(variablename)

(beginning Asterisk 1.4)
Used to declare a variable global, i.e. valid beyond the active life of the current channel. Asterisk 1.2 users use Set() (the section called “Set()”) with the option g.

; define global variable ${myvariable}:

exten => 123,1,Set(GLOBAL(myvariable)=Test)

	[image: image226.png]

	

	
	Whether global variables persist through a reload on the Asterisk console depends whether clearglobalvars is set in extensions.conf.

	[image: image227.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'GLOBAL' =-

[Syntax]

GLOBAL(<varname>)

[Synopsis]

Gets or sets the global variable specified

[Description]

Not available

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

GROUP()

GROUP([category])

Reads/sets the group for the channel (channels may be grouped as required).

exten => 123,1,Set(GROUP()=outgoing) ; set group

exten => 123,n,GotoIf($[${GROUP_COUNT()} > 10]?200) ; too many outgoin

g calls?

exten => 123,n,Dial(7785553233) ; dial

exten => 123,200,SetVar(DIALSTATUS=CHANUNAVAIL) ; too many outgoin

g calls, refuse

	[image: image228.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'GROUP' =-

[Syntax]

GROUP([category])

[Synopsis]

Gets or sets the channel group.

[Description]

Gets or sets the channel group.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “GROUP_COUNT()”, the section called “GROUP_LIST()”, the section called “GROUP_MATCH_COUNT()”
GROUP_COUNT()

GROUP_COUNT([group[@category]])

Returns the number of channels in the specified group. If no group is specified, the group of the current channel is assumed.

; Query outgoing for number of channels:

exten => 123,1,Set(foo=${GROUP_COUNT(outgoing)})

	[image: image229.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'GROUP_COUNT' =-

[Syntax]

GROUP_COUNT([groupname][@category])

[Synopsis]

Counts the number of channels in the specified group

[Description]

Calculates the group count for the specified group, or uses the

channel's current group if not specifed (and non-empty).

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “GROUP()”, the section called “GROUP_LIST()”, the section called “GROUP_MATCH_COUNT()”
GROUP_LIST()

GROUP_LIST()

Returns a space-separated list of all the groups set for the current channel.

exten => 123,1,Set(foo=${GROUP_LIST()})

	[image: image230.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'GROUP_LIST' =-

[Syntax]

GROUP_LIST()

[Synopsis]

Gets a list of the groups set on a channel.

[Description]

Gets a list of the groups set on a channel.

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “GROUP()”, the section called “GROUP_COUNT()”, the section called “GROUP_MATCH_COUNT()”
GROUP_MATCH_COUNT()

GROUP_MATCH_COUNT(pattern[@category])

Returns the number of channels in groups matching the specified pattern.

; Query for the number of channels in groups group[1-4]:

exten => 123,1,Set(foo=${GROUP_MATCH_COUNT(group[1-4])})

	[image: image231.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'GROUP_MATCH_COUNT' =-

[Syntax]

GROUP_MATCH_COUNT(groupmatch[@category])

[Synopsis]

Counts the number of channels in the groups matching the specified patte

rn

[Description]

Calculates the group count for all groups that match the specified patte

rn.

Uses standard regular expression matching (see regex(7)).

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “GROUP()”, the section called “GROUP_COUNT()”, the section called “GROUP_LIST()”
IAXPEER()

IAXPEER(peername[:field])

Returns information about an IAX peer. The peername can be replaced with CURRENTCHANNEL to specify the current channel. The field is one of the following:

ip
(default) the IP address of the peer

status
Peer status (when qualify=yes)

mailbox
The configured mailbox

context
The configured context

expire
The expiry time (in Unix time) for the connection

dynamic
Whether the connection is dynamic or not (yes|no).

callerid_name
The configured CID name

callerid_num
The configured CID number

codecs
The accessible codecs

codec[x]
Preferred codec number x (beginning with 0)

; Query the IP address of peer1:

exten => 123,1,Set(foo=${IAXPEER(peer1:ip)})

	[image: image232.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'IAXPEER' =-

[Syntax]

IAXPEER(<peername|CURRENTCHANNEL>[|item])

[Synopsis]

Gets IAX peer information

[Description]

If peername specified, valid items are:

- ip (default) The IP address.

- status The peer's status (if qualify=yes)

- mailbox The configured mailbox.

- context The configured context.

- expire The epoch time of the next expire.

- dynamic Is it dynamic? (yes/no).

- callerid_name The configured Caller ID name.

- callerid_num The configured Caller ID number.

- codecs The configured codecs.

- codec[x] Preferred codec index number 'x' (beginning with

 zero).

If CURRENTCHANNEL specified, returns IP address of current channel

diff output to internal help in Asterisk 1.2:

5c5

< IAXPEER(<peername|CURRENTCHANNEL>[|item])

> IAXPEER(<peername|CURRENTCHANNEL>[:item])

See also. the section called “SIPPEER()”

IF()

IF(expression?trueVal:falseVal)

Returns a value depending on a condition. If the condition is true, the value following ? is returned, otherwise the value following : is returned.

; If ${Var}=123, return 5, otherwise return 9:

exten => 123,1,Set(foo=${IF($[${Var} = 123]?5:9)})

	[image: image233.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'IF' =-

[Syntax]

IF(<expr>?[<true>][:<false>])

[Synopsis]

Conditional: Returns the data following '?' if true else the data follow

ing ':'

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “IFTIME()”, xthe section called “ExecIf()”, the section called “GotoIf()”, the section called “GotoIfTime()”
IFTIME()

IFTIME(time-condition?trueVal:falseVal)

Returns a value depending on the time condition.

The time-condition follows the format time|dayofweek|date|month; each parameter may also be a range separated by -, or contain the wildcard *. Time is given in 24 hour format (e.g. 08:00-18:00), weekdays and month names are three-letter English language abbreviations (mon, tue, wed, thu, fri, sat, sun and jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec).

; Valid from 8 a.m. to 6 p.m., Mondays, 1st to the 15th of December:

exten => 123,1,Set(foo=${IFTIME(08:00-18:00|mon|1-15|dec?5:0)})

; Valid every Saturday and Sunday:

exten => 123,1,Set(foo=${IFTIME(*|sat-sun|*|*?5:0)})

	[image: image234.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'IFTIME' =-

[Syntax]

IFTIME(<timespec>?[<true>][:<false>])

[Synopsis]

Temporal Conditional: Returns the data following '?' if true else the da

ta following ':'

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “IF()”, the section called “ExecIf()”, the section called “GotoIf()”, the section called “GotoIfTime()”
ISNULL()

ISNULL(value)

Returns 1 if value is NULL (kein Wert), otherwise returns 0.

exten => 123,1,Set(foo=${ISNULL(${Var1})})

	[image: image235.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'ISNULL' =-

[Syntax]

ISNULL(<data>)

[Synopsis]

NULL Test: Returns 1 if NULL or 0 otherwise

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

KEYPADHASH()

KEYPADHASH(string)

Transforms an alphabetical string to digits according to the standard telephone keypad letter assignments. This enables quick conversion of vanity numbers (e.g. 1-800-BADHAIR (1-800-2234247) to actual numbers.

	1
	2 ABC
	3 DEF

	4 GHI
	5 JKL
	6 MNO

	7 PQRS
	8 TUV
	9 WXYZ

	*
	0
	#

exten => 123,1,Set(foo=${KEYPADHASH(BADHAIR)}) ; returns 2234247

	[image: image236.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'KEYPADHASH' =-

[Syntax]

KEYPADHASH(<string>)

[Synopsis]

Hash the letters in the string into the equivalent keypad numbers.

[Description]

Example: ${KEYPADHASH(Les)} returns "537"

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

LANGUAGE()

LANGUAGE()

Reads/sets the language of the current channel. This setting determines, among other things, which audio files are played. If the language is set to de and Playback(tt-weasels) is run in the dialplan, Asterisk will play de/tt-weasels, if it exists, and similarly for SayDigits() and other applications which rely on pre-recorded audio files.

; Query:

exten => 123,1,Set(foo=${LANGUAGE()})

; Set Spanish:

exten => 123,1,Set(LANGUAGE()=es)

	[image: image237.png]

	

	
	This function is deprecated. Use CHANNEL(language) instead. See the section called “CHANNEL()”

	[image: image238.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'LANGUAGE' =-

[Syntax]

LANGUAGE()

[Synopsis]

Gets or sets the channel's language.

[Description]

Deprecated. Use CHANNEL(language) instead.

diff output to internal help in Asterisk 1.2:

11c11,18

< Deprecated. Use CHANNEL(language) instead.

> Gets or sets the channel language. This information is used for the

> syntax in generation of numbers, and to choose a natural language file

> when available. For example, if language is set to 'fr' and the file

> 'demo-congrats' is requested to be played, if the file

> 'fr/demo-congrats' exists, then it will play that file, and if not

> will play the normal 'demo-congrats'. For some language codes,

> changing the language also changes the syntax of some Asterisk

> functions, like SayNumber.

LEN()

LEN(string)

Returns the length of string.

; If ${test} is "Hello World"

exten => 123,1,Set(foo=${LEN(${test})})

; returns 11

	[image: image239.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'LEN' =-

[Syntax]

LEN(<string>)

[Synopsis]

Returns the length of the argument given

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

MATH()

MATH(number1 operator number2[,typeofresult])

Calculates simple mathematical expressions. Allowed operators are : +, -, /, *, <, >, <=, >=, ==, % (modulo). The typeofresult may be: f, float (default), i, int (integer), h, hex (hexadecimal), c, char (byte output).

; Calculate 3*8 as an integer:

exten => 123,1,Set(i=${MATH(3*8,int)})

	[image: image240.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'MATH' =-

[Syntax]

MATH(<number1><op><number 2>[,<type_of_result>])

[Synopsis]

Performs Mathematical Functions

[Description]

Perform calculation on number 1 to number 2. Valid ops are:

 +,-,/,*,%,<,>,>=,<=,==

and behave as their C equivalents.

<type_of_result> - wanted type of result:

 f, float - float(default)

 i, int - integer,

 h, hex - hex,

 c, char - char

Example: Set(i=${MATH(123%16,int)}) - sets var i=11

diff output to internal help in Asterisk 1.2:

- none -

MD5()

MD5(string)

Calculates the MD5 hash (checksum) of a string (returns in hexadecimal format).

exten => 123,1,Set(foo=${MD5(${string})})

	[image: image241.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'MD5' =-

[Syntax]

MD5(<data>)

[Synopsis]

Computes an MD5 digest

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

MUSICCLASS()

MUSICCLASS(class)

Reads/sets the music-on-hold class.

; Query:

exten => 123,1,Set(foo=${MUSICCLASS()})

; Set to "HeavyMetal":

exten => 123,1,Set(MUSICCLASS()=HeavyMetal)

	[image: image242.png]

	

	
	Deprecated as of Asterisk 1.4. Use Set(CHANNEL(musicclass)=default) instead. See the section called “CHANNEL()”.

	[image: image243.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'MUSICCLASS' =-

[Syntax]

MUSICCLASS()

[Synopsis]

Read or Set the MusicOnHold class

[Description]

Deprecated. Use CHANNEL(musicclass) instead.

diff output to internal help in Asterisk 1.2:

11c11

< Deprecated. Use CHANNEL(musicclass) instead.

> This function will read or set the music on hold class for a channel.

ODBC_SQL()

ODBC_SQL(SQL-query)

Executes the specified SQL query and returns the result, if any.

; Query:

exten => 123,1,Set(Name=${ODBC_SQL(SELECT name FROM list WHERE number='1

23')})

; Set:

exten => 123,1,Set(ODBC_SQL(UPDATE list SET name='Robert' WHERE number='

123'))

ODBC_USER_DATABASE()

ODBC_USER_DATABASE(var1[,var2[,...]])

Runs the SQL query defined in func_odbc.conf and returns the result, if any. The values defined in func_odbc.conf, such as ${VAL1}, ${VAL2}, ..., ${ARG1}, ${ARG2}, ... are replaced by the corresponding values provided when the function is called.

func_odbc.conf:

[USER_DATABASE]

dsn=my_database

read=SELECT name FROM list WHERE number='${ARG1}'

write=UPDATE list SET name=${ARG1} WHERE number='${VAL1}'

extensions.conf:

; Query (read):

exten => 123,1,Set(Name=${ODBC_USER_DATABASE(${EXTEN})})

; Update (write):

exten => 123,1,Set(ODBC_USER_DATABASE(${CALLERID(name)})=1000)

QUEUEAGENTCOUNT()

in Asterisk 1.2; Asterisk 1.4 users see QUEUE_MEMBER_COUNT()
QUEUEAGENTCOUNT(queue)

Returns the number of agents (as opposed to number of callers) in the specified queue.

; Number of agents in "supportqueue":

exten => 123,1,Set(foo=${QUEUEAGENTCOUNT(supportqueue)})

	[image: image244.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'QUEUEAGENTCOUNT' =-

[Syntax]

QUEUEAGENTCOUNT(<queuename>)

[Synopsis]

Count number of agents answering a queue

[Description]

Returns the number of members currently associated with the specified qu

eue.

This function is deprecated. You should use QUEUE_MEMBER_COUNT() instea

d.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

QUEUE_MEMBER_COUNT()

in Asterisk 1.4 - Asterisk 1.2 users see QUEUEAGENTCOUNT()
QUEUE_MEMBER_COUNT(queue)

Returns the number of agents (and/or members, which may be devices rather than logged-in users) in the specified queue.

; Number of members in "supportqueue":

exten => 123,1,Set(foo=${QUEUE_MEMBER_COUNT(supportqueue)})

	[image: image245.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'QUEUE_MEMBER_COUNT' =-

[Syntax]

QUEUE_MEMBER_COUNT(<queuename>)

[Synopsis]

Count number of members answering a queue

[Description]

Returns the number of members currently associated with the specified qu

eue.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

QUEUE_MEMBER_LIST()

QUEUE_MEMBER_LIST(queue)

Returns a comma-delimited list of the members in the specified queue.

; Agents in "supportqueue":

exten => 123,1,Set(foo=${QUEUE_MEMBER_LIST(supportqueue)})

; Returns, for example, 5,8,33

	[image: image246.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'QUEUE_MEMBER_LIST' =-

[Syntax]

QUEUE_MEMBER_LIST(<queuename>)

[Synopsis]

Returns a list of interfaces on a queue

[Description]

Returns a comma-separated list of members associated with the specified

queue.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

QUOTE()

QUOTE(string)

Quotes a string exactly, escaping embedded quotation marks if necessary.

; If ${var} is >>The "Asterisk"-PBX<<

exten => 123,1,Set(foo=${QUOTE(${var})})

; returns >>The \"Asterisk\"-PBX<<

	[image: image247.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'QUOTE' =-

[Syntax]

QUOTE(<string>)

[Synopsis]

Quotes a given string, escaping embedded quotes as necessary

[Description]

Not available

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

RAND()

RAND(min,max)

(beginning Asterisk 1.4)
Returns a randomly-generated number between min and max inclusive. The default for min is 0, for max the default is the largest integer supported by the system (usually 2147483647).

; Choose a random number between 1 and 10 (inclusive):

exten => 123,1,Set(coincidence=${RAND(1,10)})

; Game of chance:

exten => 123,1,GotoIf($[${RAND(0,100)} < 25]?won:lost)

exten => won,1,Playback(won)

exten => won,n,Goto(123,1)

exten => lost,1,Playback(lost)

exten => lost,n,Goto(123,1)

	[image: image248.png]

	

	
	If you are using versions prior to Asterisk 1.4, use the application Random().

	[image: image249.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'RAND' =-

[Syntax]

RAND([min][|max])

[Synopsis]

Choose a random number in a range

[Description]

Choose a random number between min and max. Min defaults to 0, if not

specified, while max defaults to RAND_MAX (2147483647 on many systems).

 Example: Set(junky=${RAND(1|8)});

 Sets junky to a random number between 1 and 8, inclusive.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “Random()”

REGEX()

REGEX("expression" string)

Returns 1, if string matches the regular expression expression, otherwise returns 0. The regular expression may include ^ (matches the beginning) and $ (matches the end). Variables are evaluated first.

The parser in Asterisk 1.2 does not behave consistently and can be confused by expressions containing special characters such as $ or angle brackets. An ugly workaround is to define a variable (for example ${dollar}) and have it contain the special character (for example, "$").

; Test to see if the string "b3" matches the regular expression "[abc][0

-9]":

exten => 123,1,Set(foo=${REGEX("[abc][0-9]" b3)}) ; returns 1

; Test to see if ${str} ends in 0, for Asterisk 1.4:

exten => 123,1,Set(foo=${REGEX("0$" ${str})})

; in Asterisk 1.2, using the workaround described above:

exten => 123,1,Set(foo=${REGEX("0${dollar}" ${str})})

	[image: image250.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'REGEX' =-

[Syntax]

REGEX("<regular expression>" <data>)

[Synopsis]

Regular Expression

[Description]

Returns 1 if data matches regular expression, or 0 otherwise.

Please note that the space following the double quotes separating the re

gex from the data

is optional and if present, is skipped. If a space is desired at the beg

inning of the data,

then put two spaces there; the second will not be skipped.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

SET()

SET(variablename=expression)

Can be used inside nested expressions to set variables to the desired value. (Not to be confused with the application Set()! This is the cause of much grief!)

; Set ${a}, ${b}, ${c}, and ${d} to 8:

exten => 123,1,Set(a=${SET(b=${SET(c=${SET(d=8)})})})

; In the interest of readability and comprehension, it is

; usually better to write one or two more lines

	[image: image251.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'SET' =-

[Syntax]

SET(<varname>=[<value>])

[Synopsis]

SET assigns a value to a channel variable

[Description]

Not available

diff output to internal help in Asterisk 1.2:

- none -

See also. the section called “Set()”

SHA1()

SHA1(string)

Calculates the SHA1 hash (checksum) of a string (returns hexadecimal).

; Calculate the SHA1 hash of "Hello World":

exten => 123,1,Set(sha1hash=${SHA1(Hello World)})

	[image: image252.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'SHA1' =-

[Syntax]

SHA1(<data>)

[Synopsis]

Computes a SHA1 digest

[Description]

Generate a SHA1 digest via the SHA1 algorythm.

 Example: Set(sha1hash=${SHA1(junky)})

 Sets the asterisk variable sha1hash to the string '60fa5675b9303eb62f99

a9cd47f9f5837d18f9a0'

 which is known as his hash

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

SIPCHANINFO()

SIPCHANINFO(field)

Returns information about the current SIP channel. The field may be one of:

peerip
The IP address of the peer

recvip
The source IP address of the peer

from
The URI from the From: header

uri
The URI from the Contact: header

useragent
The user agent

peername
The name of the peer

; Query the name of a SIP peer:

exten => 123,1,Set(foo=${SIPCHANINFO(peername)})

	[image: image253.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'SIPCHANINFO' =-

[Syntax]

SIPCHANINFO(item)

[Synopsis]

Gets the specified SIP parameter from the current channel

[Description]

Valid items are:

- peerip The IP address of the peer.

- recvip The source IP address of the peer.

- from The URI from the From: header.

- uri The URI from the Contact: header.

- useragent The useragent.

- peername The name of the peer.

- t38passthrough 1 if T38 is offered or enabled in this channel,

otherwise 0

diff output to internal help in Asterisk 1.2:

18d17

< - t38passthrough 1 if T38 is offered or enabled in this channel

, otherwise 0

SIPPEER()

SIPPEER(peername[,field])

Returns information about a SIP peer. The field may be one of:

ip
The IP address of the peer (default)

mailbox
The configured mailbox

context
The configured context

expire
The expiry time (in Unix time) for the connection.

dynamic
Whether or not dynamic is set (yes|no).

callerid_name
The configured CID name

callerid_num
The configured CID number

codecs
Available codecs

status
The status (when qualify=yes is set)

regexten
The registration extension

limit
Maximum number of calls

curcalls
Number of current calls (only if a limit is set)

language
The default language for this peer

useragent
The useragent of the peer

codec[x]
Preferred codec number x (beginning with 0)

accountcode
The billing account code in the CDR for conversations with this peer

; The IP address of peer 2001:

exten => 123,1,Set(sip_ip=${SIPPEER(2001,ip)})

; the preferred codec of the peer:

exten => 123,n,Set(sip_ip=${SIPPEER(2001,codec[0])})

	[image: image254.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'SIPPEER' =-

[Syntax]

SIPPEER(<peername>[|item])

[Synopsis]

Gets SIP peer information

[Description]

Valid items are:

- ip (default) The IP address.

- mailbox The configured mailbox.

- context The configured context.

- expire The epoch time of the next expire.

- dynamic Is it dynamic? (yes/no).

- callerid_name The configured Caller ID name.

- callerid_num The configured Caller ID number.

- codecs The configured codecs.

- status Status (if qualify=yes).

- regexten Registration extension

- limit Call limit (call-limit)

- curcalls Current amount of calls

 Only available if call-limit is set

- language Default language for peer

- accountcode Account code for this peer

- useragent Current user agent id for peer

- codec[x] Preferred codec index number 'x' (beginning with

 zero).

diff output to internal help in Asterisk 1.2:

5c5

< SIPPEER(<peername>[|item])

> SIPPEER(<peername>[:item])

See also. the section called “IAXPEER()”

SIP_HEADER()

SIP_HEADER(headername[,number])

Retrieves the specified SIP header. You are not likely to need this unless you have a thorough understanding of the SIP protocol. Because some headers appear more than once in a SIP packet, you can specify which instance of the header you want to see with number.

; Query the TO header:

exten => 123,1,Set(DN=${SIP_HEADER(TO):5})

exten => 123,2,Set(DN=${CUT(DN,@,1)})

	[image: image255.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'SIP_HEADER' =-

[Syntax]

SIP_HEADER(<name>[,<number>])

[Synopsis]

Gets the specified SIP header

[Description]

Since there are several headers (such as Via) which can occur multiple

times, SIP_HEADER takes an optional second argument to specify which hea

der with

that name to retrieve. Headers start at offset 1.

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “SIPAddHeader()”

SORT()

SORT(key1:value1[,key2:value2[,...]])

Processes a list of keys and values and returns a comma-separated list of the keys sorted based on their floating-point values.

; Sort a list:

exten => 123,1,Set(foo=${SORT(four:4|half:.5|hundred:100|pi:3.14|e:2.718

28|minusone:-1)})

; foo is now "minusone,half,e,pi,four,hundred"

	[image: image256.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'SORT' =-

[Syntax]

SORT(key1:val1[...][,keyN:valN])

[Synopsis]

Sorts a list of key/vals into a list of keys, based upon the vals

[Description]

Takes a comma-separated list of keys and values, each separated by a col

on, and returns a

comma-separated list of the keys, sorted by their values. Values will b

e evaluated as

floating-point numbers.

diff output to internal help in Asterisk 1.2:

- none -

STAT()

STAT(flag,filename)

(beginning Asterisk 1.4)
Returns status information about a file (compare the shell commands test and stat). The filename refers to an inode, so it can be a directory or a specific file. The flag can be one of the following:

d
Tests to see if filename is a directory.

e
Tests if the file exists.

f
Tests if filename is a regular file (as opposed to a special file, such as a block special file, character special file, symbolic link, named pipe, or socket).

m
Returns the mode of filename (octal), i.e. the permissions: e.g. 0754.

s
Returns the file size in bytes.

A
Returns the last access time (in Unix time).

C
Returns the last inode change time (in Unix time).

M
Returns the last modified time (in Unix time).

; See when /etc/crontab was last changed:

exten => 123,1,Set(foo=${STAT(M,/etc/crontab)})

	[image: image257.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'STAT' =-

[Syntax]

STAT(<flag>,<filename>)

[Synopsis]

Does a check on the specified file

[Description]

flag may be one of the following:

 d - Checks if the file is a directory

 e - Checks if the file exists

 f - Checks if the file is a regular file

 m - Returns the file mode (in octal)

 s - Returns the size (in bytes) of the file

 A - Returns the epoch at which the file was last accessed

 C - Returns the epoch at which the inode was last changed

 M - Returns the epoch at which the file was last modified

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

STRFTIME()

STRFTIME([unixtime][,[timezone][,format]])

Returns a date and time in the specified format. If unixtime is not provided, the current time is used. The default timezone is the system default timezone. Possible time zones may be found in /usr/share/zoneinfo/. The format placeholders are the same as those for the C function strftime() (see man strftime), the default is %c, i.e. the locale-dependent date-time format.

; Date/time in format YYYY-MM-DD HH:MM:SS

exten => 123,1,Set(time=${STRFTIME(${EPOCH},America/Los_Angeles,"%Y-%m-%

d %H:%M:%S")})

	[image: image258.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'STRFTIME' =-

[Syntax]

STRFTIME([<epoch>][|[timezone][|format]])

[Synopsis]

Returns the current date/time in a specified format.

[Description]

Not available

diff output to internal help in Asterisk 1.2:

5c5

< STRFTIME([<epoch>][|[timezone][|format]])

> STRFTIME([<epoch>][,[timezone][,format]])

STRPTIME()

STRPTIME(datetime|timezone|format)

(beginning Asterisk 1.4)
Converts a formatted date and time string into a Unix timestamp.

; Save the date/time in the format YYYY-MM-DD HH:MM:SS in the variable $

{time}:

exten => 123,1,Set(time=${STRFTIME(${EPOCH},America/Los_Angeles,"%Y-%m-%

d %H:%M:%S")})

; Convert ${time} into Unix time:

exten => 123,n,Set(timestamp=${STRPTIME(${time}|America/Los_Angeles|%Y-%

m-%d %H:%M:%S)}

	[image: image259.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'STRPTIME' =-

[Syntax]

STRPTIME(<datetime>|<timezone>|<format>)

[Synopsis]

Returns the epoch of the arbitrary date/time string structured as descri

bed in the format.

[Description]

This is useful for converting a date into an EPOCH time, possibly to pas

s to

an application like SayUnixTime or to calculate the difference between t

wo

date strings.

Example:

 ${STRPTIME(2006-03-01 07:30:35|America/Chicago|%Y-%m-%d %H:%M:%S)} ret

urns 1141219835

diff output to internal help in Asterisk 1.2:

-- not available in Version 1.2 --

See also. the section called “STRFTIME()”

TIMEOUT()

TIMEOUT(type)

Reads/sets a timeout on the channel. The following types are permitted:

absolute
The absolute, maximum duration of a call. Once reached, the call is passed to the extension T, if it exists, or hung up. A value of 0 is the same as no timeout. When this function is called, the existing setting is reset and overwritten. The timeout counter starts when this function is called, not when the call begins.

digit
The maximum time allowed between entry of digits. If exceeded, user input is deemed to have finished. If the resulting extension does not exist, the call is passed to the extension i (invalid), if it exists, or hung up. The default is 5 seconds.

response
The maximum time to wait for input from a user. If the user does not enter an extension, the call is passed to extension t (timeout), if it exists, or the call is hung up. Default: 10 seconds.

; Check the absolute timeout:

exten => 123,1,Set(foo=${TIMEOUT(absolute)})

; Limit call duration to a maximum of 60 seconds:

exten => 123,1,Set(TIMEOUT(absolute)=60)

exten => 123,n,Dial(SIP/${EXTEN})

exten => T,1,Playback(sorry-dude)

exten => T,n,Playback(buh-bye)

exten => T,n,Hangup()

	[image: image260.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'TIMEOUT' =-

[Syntax]

TIMEOUT(timeouttype)

[Synopsis]

Gets or sets timeouts on the channel.

[Description]

Gets or sets various channel timeouts. The timeouts that can be

manipulated are:

absolute: The absolute maximum amount of time permitted for a call. A

 setting of 0 disables the timeout.

digit: The maximum amount of time permitted between digits when the

 user is typing in an extension. When this timeout expires,

 after the user has started to type in an extension, the

 extension will be considered complete, and will be

 interpreted. Note that if an extension typed in is valid,

 it will not have to timeout to be tested, so typically at

 the expiry of this timeout, the extension will be considered

 invalid (and thus control would be passed to the 'i'

 extension, or if it doesn't exist the call would be

 terminated). The default timeout is 5 seconds.

response: The maximum amount of time permitted after falling through a

 series of priorities for a channel in which the user may

 begin typing an extension. If the user does not type an

 extension in this amount of time, control will pass to the

 't' extension if it exists, and if not the call would be

 terminated. The default timeout is 10 seconds.

diff output to internal help in Asterisk 1.2:

- none -

TXTCIDNAME()

TXTCIDNAME(number)

Looks up the CID name of the caller in DNS (via a TXT-Record).

exten => 123,1,Set(foo=${TXTCIDNAME(9755557346)})

URIDECODE()

URIDECODE(string)

Decodes a URI encoded string. See URIENCODE().

; Decode "www.example.com/?page=Hello%20World":

exten => 123,1,Set(foo=${URIDECODE("Hello%20World")})

; Returns "Hello World"

	[image: image261.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'URIDECODE' =-

[Syntax]

URIDECODE(<data>)

[Synopsis]

Decodes a URI-encoded string according to RFC 2396.

[Description]

Not available

diff output to internal help in Asterisk 1.2:

8c8

< Decodes a URI-encoded string according to RFC 2396.

> Decodes an URI-encoded string.

URIENCODE()

URIENCODE(string)

URI-encodes a string, so that characters not normally allowed in a URL are replaced with escape sequences following the format %XX, where XX is the hexadecimal bytecode of the character.

; Encode "Hello World":

exten => 123,1,Set(foo=${URIENCODE("Hello World")})

; Returns "Hello%20World"

	[image: image262.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'URIENCODE' =-

[Syntax]

URIENCODE(<data>)

[Synopsis]

Encodes a string to URI-safe encoding according to RFC 2396.

[Description]

Not available

diff output to internal help in Asterisk 1.2:

8c8

< Encodes a string to URI-safe encoding according to RFC 2396.

> Encodes a string to URI-safe encoding.

VMCOUNT()

VMCOUNT(VM-box[@context][|folder])

Returns the number of voice mail messages in the specified mailbox. The default context is default, the default folder is INBOX.

; Query for the number of messages in mailbox 456:

exten => 123,1,Answer()

exten => 123,n,Set(count=${VMCOUNT(456)})

exten => 123,n,Playback(vm-youhave) ; "You have"

exten => 123,n,GotoIf($[${count} = 0]?none:new)

exten => 123,10(none),Playback(vm-no) ; "no"

exten => 123,n,Goto(continue)

exten => 123,20(new),SayNumber($COUNT) ; count

exten => 123,n,Goto(continue)

exten => 123,30(continue),Playback(vm-INBOX) ; "new"

exten => 123,n,Playback(vm-messages) ; "messages"

exten => 123,n,Playback(vm-goodbye) ; "Goodbye!"

exten => 123,n,Hangup()

	[image: image263.png]

	

	
	Internal help for this application in Asterisk 1.4:

 -= Info about function 'VMCOUNT' =-

[Syntax]

VMCOUNT(vmbox[@context][|folder])

[Synopsis]

Counts the voicemail in a specified mailbox

[Description]

 context - defaults to "default"

 folder - defaults to "INBOX"

diff output to internal help in Asterisk 1.2:

- none -

See also the section called “mailboxExists()”
Appendix D. Configuration templates

Configuration files such as sip.conf, iax.conf etc. can have hundreds of entries; such files are difficult to maintain.

Take a typical sip.conf, for example:

[201]

username=201

secret=1111

context=default

type=friend

qualify=yes

host=dynamic

canreinvite=no

[202]

username=202

secret=2222

context=default

type=friend

qualify=yes

host=dynamic

canreinvite=no

[203]

username=203

secret=3333

context=default

type=friend

qualify=yes

host=dynamic

canreinvite=no

There is another way. Asterisk offers the little-known support for templates! Using a template, our sip.conf would look like this instead:

[my-phones](!) ; This entry is the template

context=default

type=friend

qualify=yes

host=dynamic

canreinvite=no

[201](my-phones) ; Station 201

username=201

secret=1111

[202](my-phones) ; Station 202

username=202

secret=2222

[203](my-phones) ; Station 203

username=203

secret=3333

This is particularly useful when you have groups or classes of stations with very similar characteristics; that is, in cases where it isn't possible to put all the common parameters in the [general] section. Even in this small and simple example, we've managed to save a few lines and centralize future changes to the "class" my-phones.

Creating templates

In principle, any section can serve as a template for other entries; using the tag "(!)" tells the parser that this section is to be used exclusively as a template. Note that no spaces are permitted between the square brackets or the parentheses. Templates may also be based on other templates.

[my-example-template](!)

context=default

type=friend

qualify=yes

host=dynamic

canreinvite=no

Using templates

Use templates by entering the template name (without spaces!) immediately after the section title. The contents of the template are interpreted first, then the other lines in the section. Sections can inherit multiple templates, e.g.:

[201](my-phones,sales) ; inherits "my-phones" and "sales"

username=201

secret=1111

Parameters in the template may be overwritten with parameters in the section, if necessary.

Example

[stations](!) ; Template "stations"

type=friend

qualify=yes

dtmfmode=rfc2833

disallow=all

allow=alaw

[snom](!,stations) ; Template "snom", inherits "stations"

dtmfmode=inband

[linksys](!,stations) ; Template "linksys", inherits "stations"

qualify=no

[snom1](snom) ; Station "snom1", inherits "snom"

username=101

secret=123

[snom2](snom) ; Station "snom2", inherits "snom"

username=102

secret=123

[linksys1](linksys) ; Station "linksys1", inherits "linksys"

username=103

secret=123

Additional examples: http://www.voip-info.org/wiki/index.php?page=Asterisk+config+template
GNU Free Documentation License

Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc.

Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor,
 Boston,
 MA
 02110-1301
 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Version 1.2, November 2002

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

GNU FDL Modification Conditions

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Sample Invariant Sections list

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

Sample Invariant Sections list

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Index

A

AJAM, The Aynchronous Javascript Asterisk Manager (AJAM)
HTML, HTML
Plain-Text, Plain-Text
XML, XML
AMI, The Asterisk Manager Interface (AMI)
Answering machine

Example, An answering machine
IVR (see VoiceMailBox: IVR)

apt-get, Why don't we use Asterisk packages with apt-get or rpm?
asterisk -rx, asterisk -rx "command"
Asterisk 1.4 Installation

Debian Linux, Installing Asterisk 1.4.x on Debian Linux 4.0 (Etch)
Asterisk Manager Interface, The Asterisk Manager Interface (AMI)
attach (see voicemail.conf: Parameter)

attachfmt (see voicemail.conf: Parameter)

Aynchronous Javascript Asterisk Manager, The Aynchronous Javascript Asterisk Manager (AJAM)
C

Call Files, Call Files
callback (see voicemail.conf: Parameter)

charset (see voicemail.conf: Parameter)

cidinternalcontexts (see voicemail.conf: Parameter)

config templates, Configuration templates
Configuration templates, Configuration templates
Context, Context
Contexts, Defined contexts
D

[default], The default context
delete (see voicemail.conf: Parameter)

Dial-by-Name, Directory (Dial-by-Name)
dialout (see voicemail.conf: Parameter)

Dialplan Applications

AddQueueMember(), AddQueueMember()
ADSIProg(), ADSIProg()
AgentCallbackLogin(), AgentCallbackLogin()
AgentLogin(), AgentLogin()
AgentMonitorOutgoing(), AgentMonitorOutgoing()
AGI(), AGI()
AlarmReceiver(), AlarmReceiver()
AMD(), AMD()
Answer(), Answer()
AppendCDRUserField(), AppendCDRUserField()
Authenticate(), Authenticate()
Background(), Background()
BackgroundDetect(), BackgroundDetect()
Busy(), Busy()
CallingPres(), CallingPres()
ChangeMonitor(), ChangeMonitor()
ChanIsAvail(), ChanIsAvail()
ChannelRedirect(), ChannelRedirect()
ChanSpy(), ChanSpy()
Congestion(), Congestion()
ContinueWhile(), ContinueWhile()
ControlPlayback(), ControlPlayback()
DateTime(), DateTime()
DBdel(), DBdel()
DBdeltree(), DBdeltree()
DeadAGI(), DeadAGI()
Dial(), Dial()
Dictate(), Dictate()
Directory(), Directory()
DISA(), DISA()
DumpChan(), DumpChan()
EAGI(), EAGI()
Echo(), Echo()
EndWhile(), EndWhile()
Exec(), Exec()
ExecIf(), ExecIf()
ExecIfTime(), ExecIfTime()
ExitWhile(), ExitWhile()
ExtenSpy(), ExtenSpy()
ExternalIVR(), ExternalIVR()
FastAGI(), FastAGI()
Festival(), Festival()
Flash(), Flash()
FollowMe(), FollowMe()
ForkCDR(), ForkCDR()
GetCPEID(), GetCPEID()
Gosub(), Gosub()
GosubIf(), GosubIf()
Goto(), Goto()
GotoIf(), GotoIf()
GotoIfTime(), GotoIfTime()
Hangup(), Hangup()
IAX2Provision(), IAX2Provision()
ImportVar(), ImportVar()
Log(), Log()
LookupBlacklist(), LookupBlacklist()
LookupCIDName(), LookupCIDName()
Macro(), Macro()
MacroExclusive(), MacroExclusive()
MacroExit(), MacroExit()
MacroIf(), MacroIf()
mailboxExists(), mailboxExists()
MeetMe(), MeetMe()
MeetMeAdmin(), MeetMeAdmin()
MeetMeCount(), MeetMeCount()
Milliwatt(), Milliwatt()
MixMonitor(), MixMonitor()
Monitor(), Monitor()
Morsecode(), Morsecode()
MP3Player(), MP3Player()
MusicOnHold(), MusicOnHold()
NBScat(), NBScat()
NoCDR(), NoCDR()
NoOp(), NoOp()
Page(), Page()
Park(), Park()
ParkAndAnnounce(), ParkAndAnnounce()
ParkedCall(), ParkedCall()
PauseMonitor(), PauseMonitor()
PauseQueueMember(), PauseQueueMember()
Perl(), Perl()
PHP(), PHP()
Pickup(), Pickup()
Playback(), Playback()
Playtones(), Playtones()
PrivacyManager(), PrivacyManager()
Progress(), Progress()
Queue(), Queue()
QueueLog(), QueueLog()
Random(), Random()
Read(), Read()
ReadFile(), ReadFile()
RealTime(), RealTime()
RealTimeUpdate(), RealTimeUpdate()
Record(), Record()
RemoveQueueMember(), RemoveQueueMember()
ResetCDR(), ResetCDR()
RetryDial(), RetryDial()
Return(), Return()
Ringing(), Ringing()
SayAlpha(), SayAlpha()
SayDigits(), SayDigits()
SayNumber(), SayNumber()
SayPhonetic(), SayPhonetic()
SayUnixTime(), SayUnixTime()
SendDTMF(), SendDTMF()
SendImage(), SendImage()
SendText(), SendText()
SendURL(), SendURL()
Set(), Set()
SetAMAFlags(), SetAMAFlags()
SetCallerPres(), SetCallerPres()
SetCDRUserField(), SetCDRUserField()
SetGlobalVar(), SetGlobalVar()
SetMusicOnHold(), SetMusicOnHold()
SetTransferCapability(), SetTransferCapability()
SIPAddHeader(), SIPAddHeader()
SIPdtmfMode(), SIPdtmfMode()
SMS(), SMS()
SoftHangup(), SoftHangup()
StopMonitor(), StopMonitor()
StopPlaytones(), StopPlaytones()
System(), System()
Transfer(), Transfer()
TryExec(), TryExec()
TrySystem(), TrySystem()
UnpauseMonitor(), UnpauseMonitor()
UnpauseQueueMember(), UnpauseQueueMember()
UserEvent(), UserEvent()
Verbose(), Verbose()
VMAuthenticate(), VMAuthenticate()
VoiceMail(), VoiceMail()
VoiceMailMain(), VoiceMailMain()
Wait(), Wait()
WaitExten(), WaitExten()
WaitForRing(), WaitForRing()
WaitForSilence(), WaitForSilence()
WaitMusicOnHold(), WaitMusicOnHold()
While(), While()
Zapateller(), Zapateller()
ZapBarge(), ZapBarge()
ZapRAS(), ZapRAS()
ZapScan(), ZapScan()
Dialplan Functions

AGENT(), AGENT()
ARRAY(), ARRAY()
BASE64_DECODE(), BASE64_DECODE()
BASE64_ENCODE(), BASE64_ENCODE()
CALLERID(), CALLERID()
CDR(), CDR()
CHANNEL(), CHANNEL()
CHECKSIPDOMAIN(), CHECKSIPDOMAIN()
CURL(), CURL()
CUT(), CUT()
DB(), DB()
DB_DELETE(), DB_DELETE()
DB_EXISTS(), DB_EXISTS()
DUNDILOOKUP(), DUNDILOOKUP()
ENUMLOOKUP(), ENUMLOOKUP()
ENV(), ENV()
EVAL(), EVAL()
EXISTS(), EXISTS()
FIELDQTY(), FIELDQTY()
FILTER(), FILTER()
GLOBAL(), GLOBAL()
GROUP(), GROUP()
GROUP_COUNT(), GROUP_COUNT()
GROUP_LIST(), GROUP_LIST()
GROUP_MATCH_COUNT(), GROUP_MATCH_COUNT()
IAXPEER(), IAXPEER()
IF(), IF()
IFTIME(), IFTIME()
ISNULL(), ISNULL()
KEYPADHASH(), KEYPADHASH()
LANGUAGE(), LANGUAGE()
LEN(), LEN()
MATH(), MATH()
MD5(), MD5()
MUSICCLASS(), MUSICCLASS()
ODBC_SQL(), ODBC_SQL()
ODBC_USER_DATABASE(), ODBC_USER_DATABASE()
QUEUEAGENTCOUNT(), QUEUEAGENTCOUNT()
QUEUE_MEMBER_COUNT(), QUEUE_MEMBER_COUNT()
QUEUE_MEMBER_LIST(), QUEUE_MEMBER_LIST()
QUOTE(), QUOTE()
RAND(), RAND()
REGEX(), REGEX()
SET(), SET()
SHA1(), SHA1()
SIPCHANINFO(), SIPCHANINFO()
SIPPEER(), SIPPEER()
SIP_HEADER(), SIP_HEADER()
SORT(), SORT()
STAT(), STAT()
STRFTIME(), STRFTIME()
STRPTIME(), STRPTIME()
TIMEOUT(), TIMEOUT()
TXTCIDNAME(), TXTCIDNAME()
URIDECODE(), URIDECODE()
URIENCODE(), URIENCODE()
VMCOUNT(), VMCOUNT()
dialplan show, Testing a pattern using dialplan show
directory, Directory (Dial-by-Name)
directoryintro (see voicemail.conf: Parameter)

E

emailbody (see voicemail.conf: Parameter)

emailsubject (see voicemail.conf: Parameter)

envelope (see voicemail.conf: Parameter)

Extension, Extension
Extensions

a Extension, The o and a extensions
h Extension, The h extension
i Extension, The i extension
o Extension, The o and a extensions
s Extension, The s extension
Special Extensions, Special extensions
t Extension, The t and T extensions
T Extension, The t and T extensions
extensions.conf

VoiceMail(), VoiceMail()
VoiceMailMain(), VoiceMailMain()
External control of Asterisk, External control of Asterisk
externnotify (see voicemail.conf: Parameter)

externpass (see voicemail.conf: Parameter)

F

forcegreetings (see voicemail.conf: Parameter)

forcename (see voicemail.conf: Parameter)

Foreword, Foreword
format (see voicemail.conf: Parameter)

fromstring (see voicemail.conf: Parameter)

G

[general] (see voicemail.conf: [general])

Gosub() subroutines, Gosub() subroutines
GotoIf() conditional, GotoIf() conditional
H

hidefromdir (see voicemail.conf: Parameter)

How-to

Programming How-to, Programming "How-to"
http.conf, The Aynchronous Javascript Asterisk Manager (AJAM)
I

Include, Include statements
Include statements

time-conditional, Time-conditional include statements
IVR (see VoiceMailBox: IVR)

L

Labels, Labels and Goto()
M

Mailbox configuration, Mailboxesd
mailcmd (see voicemail.conf: Parameter)

Manager-Interface, The Asterisk Manager Interface (AMI)
manager.conf, The Asterisk Manager Interface (AMI)
maxgreet (see voicemail.conf: Parameter)

maxlogins (see voicemail.conf: Parameter)

maxmessage (see voicemail.conf: Parameter)

maxmsg (see voicemail.conf: Parameter)

maxsilence (see voicemail.conf: Parameter)

minmessage (see voicemail.conf: Parameter)

N

nextaftercmd (see voicemail.conf: Parameter)

O

operator (see voicemail.conf: Parameter)

P

pagerbody (see voicemail.conf: Parameter)

pagerfromstring (see voicemail.conf: Parameter)

pagersubject (see voicemail.conf: Parameter)

passwords,storage, Saving passwords in voicemail.conf
Pattern, Syntax
Pattern matching, Pattern Matching
Pattern matching order, Pattern matching order
Pattern _. in Asterisk 1.2, A special case - the pattern "_." in Asterisk 1.2
pbxskip (see voicemail.conf: Parameter)

Phones

Configure the SIP phones,
Priority, Priority
n priority, n priority
Priority jumping, Applications in the dialplan
+101, Priority jumping is deprecated
R

Regular expression, Pattern Matching
res_perl, Perl()
res_php, PHP()
review (see voicemail.conf: Parameter)

rpm, Why don't we use Asterisk packages with apt-get or rpm?
S

saycid (see voicemail.conf: Parameter)

sayduration (see voicemail.conf: Parameter)

saydurationm (see voicemail.conf: Parameter)

searchcontexts (see voicemail.conf: Parameter)

sendvoicemail (see voicemail.conf: Parameter)

serveremail (see voicemail.conf: Parameter)

silencethreshold (see voicemail.conf: Parameter)

skipms (see voicemail.conf: Parameter)

SMS, SMS()
StarAstAPI, StarAstAPI for PHP
T

Time zones, [zonemessages]
tz, [zonemessages] (see voicemail.conf: Parameter)

U

usedirectory (see voicemail.conf: Parameter)

V

Variables, Variables
Defining global variables in extensions.conf, Defining global variables in extensions.conf
Escaping, Reserved characters
Inheritance, Inheritance of channel variables
Integers, Integers
Manipulation, Manipulating variables
Set(), Defining variables with Set()
Strings, String variables
System channel variables, System channel variables
Version

Which Asterisk version?, Which Asterisk version?
VM_CALLERID, [general]
VM_CIDNAME, [general]
VM_CIDNUM, [general]
VM_DATE, [general]
VM_DUR, [general]
VM_MAILBOX, [general]
VM_MESSAGEFILE, [general]
VM_MSGNUM, [general]
VM_NAME, [general]
VoiceMail() (see extensions.conf: VoiceMail())

voicemail.conf, voicemail.conf
Contexts, Defined contexts
[default], The default context
[general], [general]
Parameter

, Syntax
attach, [general], Syntax
attachfmt, Syntax
callback, [general], Syntax
charset, [general]
cidinternalcontexts, [general]
delete, [general], Syntax
dialout, Syntax
directoryintro, [general]
emailbody, [general]
emailsubject, [general]
envelope, Syntax
externnotify, [general]
externpass, [general]
forcegreetings, [general], Syntax
forcename, [general]
format, [general]
fromstring, [general]
hidefromdir, Syntax
mailcmd, [general]
maxgreet, [general]
maxlogins, [general]
maxmessage, [general]
maxmsg, [general]
maxsilence, [general]
minmessage, [general]
nextaftercmd, Syntax
operator, Syntax
pagerbody, [general]
pagerfromstring, [general]
pagersubject, [general]
pbxskip, [general]
review, Syntax
saycid, [general], Syntax
sayduration, Syntax
saydurationm, Syntax
searchcontexts, [general]
sendvoicemail, Syntax
serveremail, [general]
silencethreshold, [general]
skipms, [general]
tz, Syntax
usedirectory, [general]
VoiceMailBoxes, Mailboxesd
[zonemessages], [zonemessages]
VoiceMailBox

IVR, IVR
VoiceMailBoxes, defining, Mailboxesd
VoiceMailMain() (see extensions.conf: VoiceMailMain())

W

While() loops, While() loops
Z

[zonemessages], [zonemessages]
